留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双程SMA丝驱动的柔性弯曲关节设计与测试

吕雨微 芦吉云 王宜耀

吕雨微,芦吉云,王宜耀. 双程SMA丝驱动的柔性弯曲关节设计与测试[J]. 机械科学与技术,2022,41(9):1334-1339 doi: 10.13433/j.cnki.1003-8728.20200503
引用本文: 吕雨微,芦吉云,王宜耀. 双程SMA丝驱动的柔性弯曲关节设计与测试[J]. 机械科学与技术,2022,41(9):1334-1339 doi: 10.13433/j.cnki.1003-8728.20200503
LYU Yuwei, LU Jiyun, WANG Yiyao. Design and Test of Flexible Bending Joint Driven by Two-way SMA Wire[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1334-1339. doi: 10.13433/j.cnki.1003-8728.20200503
Citation: LYU Yuwei, LU Jiyun, WANG Yiyao. Design and Test of Flexible Bending Joint Driven by Two-way SMA Wire[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1334-1339. doi: 10.13433/j.cnki.1003-8728.20200503

双程SMA丝驱动的柔性弯曲关节设计与测试

doi: 10.13433/j.cnki.1003-8728.20200503
基金项目: 国家自然科学基金项目(U1933202)与中央高校基本科研业务费资助项目(NJ201812)
详细信息
    作者简介:

    吕雨微(1996−),硕士研究生,研究方向为驱动器和执行器,nuaalyw244@163.com

    通讯作者:

    芦吉云,讲师,硕士生导师, lujiyun@nuaa.edu.cn

  • 中图分类号: TP242

Design and Test of Flexible Bending Joint Driven by Two-way SMA Wire

  • 摘要: 本文设计了一种柔性弯曲关节,由铝合金圆环、超弹性形状记忆合金(SMA)以及双程形状记忆合金丝构成,其中超弹性SMA作为支撑杆,双程SMA丝作为驱动机构,通过电流驱动双程SMA收缩,实现了柔性关节自主弯曲,电流卸载后关节可恢复至初始状态。搭建了双程SMA丝驱动收缩特性测试平台,当电流为2.1 A时,收缩率为4.02%,建立了ABAQUS模型仿真。建立了弯曲关节的3D运动学模型,获得了不同加载条件下,两段关节弯曲角度的理论值。通过对比理论模型和实验结果,表明:采用超弹性SMA可有效增加弯曲角度,两段关节最大弯曲角度分别为43.1°与22°。
  • 图  1  弯曲关节两节模型

    图  2  圆环B的俯视图

    图  3  两节弯曲关节空间转动形态

    图  4  关节在支撑杆1弯曲平面处的视图

    图  5  SMA丝特性测试平台

    图  6  带载40 N情况下双程SMA丝位移-时间图

    图  7  双程SMA丝收缩率与电流关系曲线

    图  8  不同工作电流加热下的关节弯曲仿真图

    图  9  弯曲关节角度测试平台

    图  10  使用钢杆时最大弯曲角度

    图  11  使用超弹性SMA支撑杆的最大弯曲角度

    图  12  ${\beta _{\text{1}}}$ 角度-电流图

    图  13  ${\beta _{\text{2}}}$ 角度-电流图

  • [1] RAJA V, KOKKOLARAS M, ISAKSSON O. A simulation-assisted complexity metric for design optimization of integrated architecture aero-engine structures[J]. Structural and Multidisciplinary Optimization, 2019, 60(1): 287-300 doi: 10.1007/s00158-019-02308-5
    [2] 李华, 陈果, 林桐, 等. 航空发动机叶片损伤自动测量方法研究[J]. 航空计算技术, 2015, 45(1): 52-55 doi: 10.3969/j.issn.1671-654X.2015.01.013

    LI H, CHEN G, LIN T, et al. Study on automatic measurement method for damage aero engine lamina[J]. Aeronautical Computing Technique, 2015, 45(1): 52-55 (in Chinese) doi: 10.3969/j.issn.1671-654X.2015.01.013
    [3] 王立闯, 马成元, 何庚波. 无损检测技术在航空发动机维修保障过程中的应用[J]. 中国科技纵横, 2015(21): 60 doi: 10.3969/j.issn.1671-2064.2015.21.044

    WANG L C, MA C Y, HE G B. Application of nondestructive testing technology in aero-engine maintenance support[J]. China Science and Technology Review, 2015(21): 60 (in Chinese) doi: 10.3969/j.issn.1671-2064.2015.21.044
    [4] THAKER A M, MUTHUSAMY V R, SEDARAT A, et al. Duodenoscope reprocessing practice patterns in U. S. endoscopy centers: a survey study[J]. Gastrointestinal Endoscopy, 2018, 88(2): 316-322 doi: 10.1016/j.gie.2018.04.2340
    [5] ALATORRE D, NASSER B, RABANI A, et al. Robotic boreblending: The future of In-Situ gas turbine repair[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid: IEEE, 2018: 1401-1407
    [6] GORISSEN B, DE VOLDER M, REYNAERTS D. Chip-on-tip endoscope incorporating a soft robotic pneumatic bending microactuator[J]. Biomedical Microdevices, 2018, 20(3): 73 doi: 10.1007/s10544-018-0317-1
    [7] COBOS-GUZMAN S, PALMER D, AXINTE D. Kinematic model to control the end-effector of a continuum robot for multi-axis processing[J]. Robotica, 2017, 35(1): 224-240 doi: 10.1017/S0263574715000946
    [8] ZHOU S, ZHANG W P, ZOU Y, et al. Piezoelectric-driven miniature wheeled robot based on flexible transmission mechanisms[J]. Microsystem Technologies, 2018, 24(2): 943-950 doi: 10.1007/s00542-017-3424-7
    [9] OUYANG B, LIU Y H, Sun D. Design of a three-segment continuum robot for minimally invasive surgery[J]. Robotics and Biomimetics, 2016, 3(1): 2 doi: 10.1186/s40638-016-0035-1
    [10] 李扬, 朱倩, 徐志伟. SMA驱动变体机翼后缘精确控制研究[J]. 机械科学与技术, 2013, 32(7): 1001-1005

    LI Y, ZHU Q, XU Z W. Research on the precise control of the morphing wing trailing edge actuated by SMA[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(7): 1001-1005 (in Chinese)
    [11] KKCIUK M, KUCHCIK W, PILCH Z, et al. A novel SMA drive based on the Graham Clock escapement and resistance feedback[J]. Sensors and Actuators A: Physical, 2019, 285: 406-413 doi: 10.1016/j.sna.2018.11.044
    [12] TOMORI H, HIYOSHI K, KIMURA S, et al. A self-deformation robot design incorporating bending-type pneumatic artificial muscles[J]. Technologies, 2019, 7(3): 51 doi: 10.3390/technologies7030051
    [13] DONG X, RAFFLES M, COBOS-GUZMAN S, et al. A novel continuum robot using twin-pivot compliant joints: design, modeling, and validation[J]. Journal of Mechanisms and Robotics, 2016, 8(2): 021010 doi: 10.1115/1.4031340
    [14] DONG X, AXINTE D, PALMER D, et al. Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines[J]. Robotics and Computer-Integrated Manufacturing, 2017, 44: 218-229 doi: 10.1016/j.rcim.2016.09.004
    [15] 王伟, 邵红亮. 不同直径NiTi形状记忆合金棒材的超弹性试验研究[J]. 结构工程师, 2014, 30(3): 168-174 doi: 10.3969/j.issn.1005-0159.2014.03.026

    WANG W, SHAO H L. Experimental investigation on mechanical properties of shape memory alloy bars in different sizes[J]. Structural Engineer, 2014, 30(3): 168-174 (in Chinese) doi: 10.3969/j.issn.1005-0159.2014.03.026
  • 加载中
图(13)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  44
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回