留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纯电动汽车制动能量回收策略优化研究

王永鼎 裴开雅

王永鼎,裴开雅. 纯电动汽车制动能量回收策略优化研究[J]. 机械科学与技术,2022,41(9):1436-1441 doi: 10.13433/j.cnki.1003-8728.20200500
引用本文: 王永鼎,裴开雅. 纯电动汽车制动能量回收策略优化研究[J]. 机械科学与技术,2022,41(9):1436-1441 doi: 10.13433/j.cnki.1003-8728.20200500
WANG Yongding, PEI Kaiya. Research on Optimization of Braking Energy Recovery Strategy for Pure Electric Vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1436-1441. doi: 10.13433/j.cnki.1003-8728.20200500
Citation: WANG Yongding, PEI Kaiya. Research on Optimization of Braking Energy Recovery Strategy for Pure Electric Vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1436-1441. doi: 10.13433/j.cnki.1003-8728.20200500

纯电动汽车制动能量回收策略优化研究

doi: 10.13433/j.cnki.1003-8728.20200500
基金项目: 上海海洋大学科研项目(K-9001-00-0006)
详细信息
    作者简介:

    王永鼎(1963−),教授,硕士生导师,研究方向为车辆动力学,yongdingwang@163.com

  • 中图分类号: U469.72

Research on Optimization of Braking Energy Recovery Strategy for Pure Electric Vehicles

  • 摘要: 为了提高纯电动汽车续航里程及能源转化率,以某纯电动汽车为研究对象,提出基于ECE法规曲线、I曲线和f曲线的汽车前后轴制动力分配策略。同时又考虑到存在电机和电池最大充电功率约束,在完善电机再生力矩、限制再生制动最大值后,采用模糊控制方法,根据不同制动强度确定机械制动力和再生制动力比例由此制定能量回收控制策略。在MATLAB/Simulink里建立起再生制动控制策略模型并将其与AVL-Cruise进行联合仿真分析本策略的优化效果。仿真结果表明所提出的控制策略能够在满足制动安全性基础上充分利用电机制动转矩,使得制动能量回收率与系统自带策略相比有显著提高,在一定程度上有效缓解了纯电动汽车续航问题。
  • 图  1  能量回收策略原理图

    图  2  制动力分配图

    图  3  各变量隶属度函数图

    图  4  轻度制动工况制动力特性

    图  5  中等强度制动工况制动力特性

    图  6  中度制动前后轴制动力分配

    图  7  中高强度工况制动力特性

    图  8  中高强度制动前后轴制动力分配

    图  9  电池SOC对比图

    表  1  整车技术参数

    参数名称 数值
    空载质量/kg 1200
    满载质量/kg 1550
    质心与前轴之间距离/m 1.08
    质心与后轴之间距离/m 1.52
    质心高度/m 0.6
    轴距/m 2.6
    风阻系数 0.285
    迎风面积/m2 1.98
    车轮半径/m 0.288
    滚动阻力系数 0.008
    下载: 导出CSV

    表  2  模糊控制规则表

    v L M H
    z VL M VH VL M VH VL M VH
    SOC S M L VL VH H VL VH H VL
    M M L VL VH H VL VH M VL
    L VL VL VL VL VL VL VL VL VL
    下载: 导出CSV

    表  3  能量回收情况

    制动强度z 可供回收
    的汽车动能 $\Delta { { E}_ K }/{\rm{kJ}}$
    本文控制
    策略回收
    的能量 ${E_r}/{\rm{kJ}}$
    回收率
    Er/Ek)/%
    SOC
    上升
    0<z<0.22 79.23 23.13 29.19 0.051
    0.22<z<0.53 175.15 76.42 43.63 0.133
    0.53<z<0.7 387.68 162.07 41.81 0.237
    下载: 导出CSV

    表  4  NEDC工况下能量分析

    参数名称 模糊控制策略 系统策略
    整车总能量损耗/J 1.24×106 1.24×106
    制动总能量损耗/J 5.64×105 5.64×105
    电池回收能量/J 2.6×105 2.06×105
    制动能量回收率/% 40.72 36.34
    总能量回收率/% 18.71 16.74
    下载: 导出CSV
  • [1] 郭金刚, 王军平, 曹秉刚. 基于优化的电动车制动力分配[J]. 机械科学与技术, 2011, 30(9): 1495-1499

    GUO J G, WANG J P, CAO B G. Optimization based braking force distribution for electric vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(9): 1495-1499 (in Chinese)
    [2] 谢文科. 电动汽车制动能量回馈控制策略研究[D]. 福州: 福州大学, 2017

    XIE W K. Research on the braking energy feedback control strategy of electric vehicles[D]. Fuzhou: Fuzhou University, 2017 (in Chinese)
    [3] 王茹洁, 武志斐, 邹纯. 纯电动物流车最优制动能量回收控制策略研究[J]. 机械设计与制造, 2020(4): 301-304 doi: 10.3969/j.issn.1001-3997.2020.04.073

    WANG R J, WU Z F, ZOU C. Study on optimal braking energy recovery control strategy of pure electric logistics vehicle[J]. Mechanical Design and Manufacturing, 2020(4): 301-304 (in Chinese) doi: 10.3969/j.issn.1001-3997.2020.04.073
    [4] 陈赞, 谭光兴, 林聪, 等. 基于模糊算法的纯电动汽车制动能量回收[J]. 广西科技大学学报, 2014, 25(3): 32-37,43

    CHEN Z, TAN G X, LIN C, et al. Pure electric vehicle braking energy recovery based on fuzzy algorithm[J]. Guangxi University of Science and Technology, 2014, 25(3): 32-37,43 (in Chinese)
    [5] XIE Y B, WANG S C. Research on regenerative braking control strategy and Simulink simulation for 4WD electric vehicle[J]. IOP Conference Series: Materials Science and Engineering, 2018, 398: 012013 doi: 10.1088/1757-899X/398/1/012013
    [6] SUN C W, CHU L, GUO J H, et al. Research on adaptive cruise control strategy of pure electric vehicle with braking energy recovery[J]. Advances in Mechanical Engineering, 2017, 9(11): 1-12
    [7] 董伟. 纯电动汽车整车控制策略研究[J]. 现代制造技术与装备, 2018(7): 51-53 doi: 10.3969/j.issn.1673-5587.2018.07.022

    DONG W. Research on control strategy of the pure electric vehicle[J]. Modern Manufacturing Technology and Equipment, 2018(7): 51-53 (in Chinese) doi: 10.3969/j.issn.1673-5587.2018.07.022
    [8] 车帅. 纯电动汽车整车控制策略研究[D]. 镇江: 江苏大学, 2018

    CHE S. Research on control strategy for the pure electric vehicle[D]. Zhenjiang: Jiangsu University, 2018 (in Chinese)
    [9] 龚贤武, 张丽君, 马建, 等. 基于制动稳定性要求的电动汽车制动力分配[J]. 长安大学学报(自然科学版), 2014, 34(1): 103-108

    GONG X W, ZHANG L J, MA J, et al. Braking force distribution of electric vehicles based on braking stability[J]. Journal of Chang'an University (Natural Science Edition), 2014, 34(1): 103-108 (in Chinese)
    [10] 吴志新, 石金蓬, 李亚伦, 等. 基于制动边界与意图识别的再生制动策略[J]. 北京航空航天大学学报, 2017, 43(8): 1531-1540

    WU Z X, SHI J P, LI Y L, et al. Regenerative brake strategy based on braking boundary and intention recognition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1531-1540 (in Chinese)
    [11] 杨喜峰, 王耀南, 刘东奇. 增程式电动汽车串联再生制动控制策略[J]. 控制工程, 2018, 25(2): 238-244

    YANG X F, WANG Y N, LIU D Q. The series control strategy of regenerative braking for range extender electric vehicles[J]. Control Engineering of China, 2018, 25(2): 238-244 (in Chinese)
    [12] 胡建国, 龚春忠, 张永, 等. 电动汽车制动能量回收技术研究[J]. 汽车实用技术, 2019(2): 10-12

    HU J G, GONG C Z, ZHANG Y, et al. Research on electric vehicle braking energy recovery technology[J]. Automobile Applied Technology, 2019(2): 10-12 (in Chinese)
    [13] 熊会元, 刘中文, 何山. 双轴驱动纯电动汽车制动能量回收策略研究[J]. 计算机仿真, 2019, 36(1): 176-180,341 doi: 10.3969/j.issn.1006-9348.2019.01.036

    XIONG H Y, LIU Z W, HE S. Research on the braking energy recovery strategy for a biaxial driving electric vehicle[J]. Computer Simulation, 2019, 36(1): 176-180,341 (in Chinese) doi: 10.3969/j.issn.1006-9348.2019.01.036
    [14] 于德亮, 任玉龙, 刘冬, 等. 纯电动汽车的再生制动力分配策略研究[J]. 机械科学与技术, 2019, 38(2): 292-297

    YU D L, REN Y L, LIU D, et al. Study on regenerative braking force distribution strategy for pure electric vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(2): 292-297 (in Chinese)
    [15] 王系朋, 潘盛辉. 纯电动汽车电制动系统设计与仿真[J]. 东莞理工学院学报, 2016, 23(1): 104-108 doi: 10.3969/j.issn.1009-0312.2016.01.022

    WANG X P, PAN S H. Design and simulation on electric braking system of pure electric vehicle[J]. Journal of Dongguan University of Technology, 2016, 23(1): 104-108 (in Chinese) doi: 10.3969/j.issn.1009-0312.2016.01.022
    [16] 王聪聪. 电液混合动力汽车动力匹配及控制策略研究[D]. 青岛: 青岛大学, 2020

    WANG C C. Research on power matching and control strategy of electro-hydraulic hybrid electric vehicle[D]. Qingdao: Qingdao University, 2020 (in Chinese)
    [17] 韩爱国, 刘奕驿. 双电机驱动电动汽车再生制动控制研究[J]. 汽车实用技术, 2020(7): 1-4

    HAN A G, LIU Y Y. Research on regenerative braking control of dual motor driven electric vehicle[J]. Automobile Applied Technology, 2020(7): 1-4 (in Chinese)
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  251
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回