留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双叶片半转叶轮水轮机水动力性能实验研究

王孝义 李磊 孙承坤 于晓峰 刘聪 张玉华

王孝义, 李磊, 孙承坤, 于晓峰, 刘聪, 张玉华. 双叶片半转叶轮水轮机水动力性能实验研究[J]. 机械科学与技术, 2022, 41(10): 1536-1542. doi: 10.13433/j.cnki.1003-8728.20200499
引用本文: 王孝义, 李磊, 孙承坤, 于晓峰, 刘聪, 张玉华. 双叶片半转叶轮水轮机水动力性能实验研究[J]. 机械科学与技术, 2022, 41(10): 1536-1542. doi: 10.13433/j.cnki.1003-8728.20200499
WANG Xiaoyi, LI Lei, SUN Chengkun, YU Xiaofeng, LIU Cong, ZHANG Yuhua. Experimental investigation of Hydrodynamic Performance of Tidal Turbine with Double-blade and Half-rotating Impeller[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1536-1542. doi: 10.13433/j.cnki.1003-8728.20200499
Citation: WANG Xiaoyi, LI Lei, SUN Chengkun, YU Xiaofeng, LIU Cong, ZHANG Yuhua. Experimental investigation of Hydrodynamic Performance of Tidal Turbine with Double-blade and Half-rotating Impeller[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1536-1542. doi: 10.13433/j.cnki.1003-8728.20200499

双叶片半转叶轮水轮机水动力性能实验研究

doi: 10.13433/j.cnki.1003-8728.20200499
基金项目: 

国家自然科学基金项目 51375014

安徽省重点研究与开发计划项目 201904b11020030

详细信息
    作者简介:

    王孝义(1970-), 教授, 博士, 研究方向为仿生机械、数字化设计与制造, wangxy@ahut.edu.cn

  • 中图分类号: TK73

Experimental investigation of Hydrodynamic Performance of Tidal Turbine with Double-blade and Half-rotating Impeller

  • 摘要: 双叶片半转叶轮水轮机是一种升阻复合新型垂直轴水轮机, 水动力性能优劣直接影响着其工程应用价值。本文首先介绍了双叶片半转叶轮水轮机工作原理, 分析了主要性能参数与实验参数的关系; 在水轮机样机制造和水下实验平台设计的基础上, 开展了水轮机低速启动性能测试、不同流速下获能效率测试以及获能效率稳定性测试等水下实验项目, 并将水下实验与数值模拟进行结果对比分析。实验结果表明: 双叶片半转叶轮水轮机在低流速(0.5 m/s)下依然保持良好的启动特性, 来流速度对水轮机获能效率影响较小, 最佳负载下水轮机平均获能效率可达46%, 明显高于传统垂直轴水轮机获能效率; 提高能量输出稳定性是该水轮机设计研究下一步需要努力的方向。
  • 图  1  半转机构运行原理

    图  2  水轮机结构及其工作原理

    图  3  水轮机实验样机

    图  4  水轮机实验测试平台示意图

    图  5  实验平台俯仰运动分析模型

    图  6  水下实验现场图

    图  7  启动过程转速变化规律

    图  8  获能效率随负载变化规律

    图  9  实验-数值模拟对比

    图  10  水轮机获能效率变化规律

    表  1  0.50 m/s来流速度下水轮机运行状态

    负载转矩/ Nm 转速/ (r·s-1) 来流速度/ (m·s-1) 输出功率/W 获能效率/%
    0.028 0.730 0.509 0.127 0.8
    0.424 0.661 0.494 1.761 11.4
    0.753 0.674 0.512 3.187 18.5
    0.935 0.630 0.504 3.701 22.5
    1.135 0.622 0.506 4.433 26.7
    1.342 0.591 0.495 4.983 32.0
    1.590 0.548 0.480 5.474 38.6
    1.955 0.521 0.490 6.392 42.4
    2.312 0.469 0.500 6.808 42.3
    2.556 0.496 0.513 7.962 46.1
    2.837 0.379 0.503 6.743 41.4
    3.097 0.169 0.480 3.285 23.2
    3.200 0.000 0.497 - -
    下载: 导出CSV

    表  2  0.75 m/s来流速度下水轮机运行状态

    负载转矩/ Nm 转速/ (r·s-1) 来流速度/ (m·s-1) 输出功率/W 获能效率/%
    0.161 0.963 0.707 0.974 2.1
    0.167 0.985 0.712 1.033 2.2
    0.172 0.982 0.702 1.064 2.4
    0.227 0.991 0.724 1.414 2.9
    1.915 0.881 0.734 10.602 20.9
    3.864 0.823 0.699 19.981 45.7
    3.869 0.810 0.708 19.699 43.4
    4.826 0.790 0.750 23.946 44.3
    6.616 0.589 0.743 24.467 46.6
    7.018 0.543 0.770 23.910 40.9
    7.147 0.530 0.771 23.791 40.6
    7.265 0.465 0.766 21.215 36.9
    7.500 0.000 0.770 - -
    下载: 导出CSV

    表  3  1.00 m/s来流速度下水轮机运行状态

    负载转矩/ Nm 转速/ (r·s-1) 来流速度/ (m·s-1) 输出功率/W 获能效率/%
    0.626 1.281 0.970 5.041 4.3
    1.914 1.164 1.000 13.995 10.9
    3.692 1.085 0.957 25.157 22.4
    4.695 1.073 0.931 31.637 30.6
    5.744 1.003 0.913 36.181 37.1
    6.703 0.930 0.918 39.148 39.5
    7.505 0.852 0.876 40.156 46.6
    7.880 1.035 0.997 51.218 40.4
    8.169 0.917 0.988 47.043 38.1
    9.100 0.558 0.867 31.889 38.2
    9.577 0.676 0.954 40.657 36.6
    10.370 0.433 0.978 28.199 23.6
    10.600 0.000 0.985 - -
    下载: 导出CSV
  • [1] 王世明, 李淼淼, 李泽宇, 等. 国际潮流能利用技术发展综述[J]. 船舶工程, 2020, 42(S1): 23-28+487

    WANG S M, LI M M, LI Z Y, et al. Development overview of international tidal energy utilization technology[J]. Ship Engineering, 2020, 42(S1): 23-28+487 (in Chinese)
    [2] 张亮, 李志川, 张学伟, 等. 垂直轴潮流能水轮机研究与利用现状[J]. 应用能源技术, 2011(9): 1-7 doi: 10.3969/j.issn.1009-3230.2011.09.001

    ZHANG L, LI Z C, ZHANG X W, et al. The status of research and application of vertical axis tidal turbine[J]. Applied Energy Technology, 2011(9): 1-7 (in Chinese) doi: 10.3969/j.issn.1009-3230.2011.09.001
    [3] SARMA N K, BISWAS A, MISRA R D. Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power[J]. Energy Conversion and Management, 2014, 83: 88-98 doi: 10.1016/j.enconman.2014.03.070
    [4] 李志川, 张学伟, 张亮, 等. 固定偏角垂直轴潮流能水轮机叶片安装位置试验研究[J]. 可再生能源, 2012, 30(4): 37-41

    LI Z C, ZHANG X W, ZHANG L, et al. Experimental study on blade preset position of fixed pitch vertical axis tidal turbine[J]. Renewable Energy Resources, 2012, 30(4): 37-41 (in Chinese)
    [5] KUMAR A, SAINI R P. Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades[J]. Renewable Energy, 2017, 113: 461-478 doi: 10.1016/j.renene.2017.06.020
    [6] 陈宇, 王树齐, 江南. 密实度对垂直轴潮流能水轮机水动力性能影响分析[J]. 浙江海洋大学学报(自然科学版), 2020, 39(1): 65-70

    CHEN Y, WANG S Q, JIANG N. Impact analysis of density on hydrodynamic performance of vertical axis tidal energy turbine[J]. Journal of Zhejiang Ocean University (Natural Science), 2020, 39(1): 65-70 (in Chinese)
    [7] LI Y, CALISAL S M. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine[J]. Renewable Energy, 2010, 35(10): 2325-2334 doi: 10.1016/j.renene.2010.03.002
    [8] HOERNER S, ABBASZADEH S, MAÎTRE T, et al. Characteristics of the fluid-structure interaction within Darrieus water turbines with highly flexible blades[J]. Journal of Fluids and Structures, 2019, 88: 13-30
    [9] GORLE J M R, CHATELLIER L, PONS F, et al. Flow and performance analysis of H-Darrieus hydroturbine in a confined flow: a computational and experimental study[J]. Journal of Fluids and Structures, 2016, 66: 382-402
    [10] THIYAGARAJ J, RAHAMATHULLAH I, ANBUCHEZHIYAN G, et al. Influence of blade numbers, overlap ratio and modified blades on performance characteristics of the savonius hydro-kinetic turbine[J]. Materials Today: Proceedings, 2021, 46(5): 4047-4053
    [11] 周宏宾, 林勇刚, 李伟, 等. 低流速海流能样机设计与海试研究[J]. 太阳能学报, 2019, 40(9): 2509-2514

    ZHOU H B, LIN Y G, LI W, et al. Design and sea test of a marine current energy prototype specialized for low current speed condition[J]. Acta Energiae Solaris Sinica, 2019, 40(9): 2509-2514 (in Chinese)
    [12] 陈展, 马勇, 张亮, 等. 矩形潮流能水轮机性能的实验研究[J]. 华中科技大学学报(自然科学版), 2013, 41(8): 97-100

    CHEN Z, MA Y, ZHANG L, et al. Experimental study on rectangular tidal current turbines[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(8): 97-100 (in Chinese)
    [13] 邱支振. 半转机构: 构成·特性·应用[M]. 合肥: 中国科学技术大学出版社, 2011

    QIU Z Z. Half-rotating mechanism: Composition, Characteristics and application[M]. Hefei: Press of University of Science and Technology of China, 2011 (in Chinese)
    [14] 王孝义, 张玉华, 董银萍, 等. 半转翼悬停和前进飞行升力估算方法[J]. 中国机械工程, 2017, 28(15): 1789-1795

    WANG X Y, ZHANG Y H, DONG Y P, et al. Lift estimation of HRWs in hovering and forward flights[J]. China Mechanical Engineering, 2017, 28(15): 1789-1795 (in Chinese)
    [15] 张玉华, 邱支振. 单叶片推进器及其运动特性[J]. 机械工程学报, 2006, 42(3): 193-196

    ZHANG Y H, QIU Z Z. Propeller with a blade and its motion characteristics[J]. Journal of Mechanical Engineering, 2006, 42(3): 193-196 (in Chinese)
    [16] 薛康. 半转叶轮潮流能水轮机水动力性能研究[D]. 马鞍山: 安徽工业大学, 2019

    XUE K. Research on hydrodynamic performance of half-rotating impeller tidal turbine[D]. Maanshan: Anhui University of Technology, 2019 (in Chinese)
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  66
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回