留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数控机床机电-刚柔耦合特性分析下的进给系统动态运动误差溯源方法

卢成伟 吴铖洋 钱博增 向皖生 项四通

卢成伟, 吴铖洋, 钱博增, 向皖生, 项四通. 数控机床机电-刚柔耦合特性分析下的进给系统动态运动误差溯源方法[J]. 机械科学与技术, 2022, 41(10): 1577-1584. doi: 10.13433/j.cnki.1003-8728.20200488
引用本文: 卢成伟, 吴铖洋, 钱博增, 向皖生, 项四通. 数控机床机电-刚柔耦合特性分析下的进给系统动态运动误差溯源方法[J]. 机械科学与技术, 2022, 41(10): 1577-1584. doi: 10.13433/j.cnki.1003-8728.20200488
LU Chengwei, WU Chengyang, QIAN Bozeng, XIANG Wansheng, XIANG Sitong. Dynamic Motion Error Traceability of CNC Machine Tool Feed System under Electromechanical Rigid-flexible Coupling Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1577-1584. doi: 10.13433/j.cnki.1003-8728.20200488
Citation: LU Chengwei, WU Chengyang, QIAN Bozeng, XIANG Wansheng, XIANG Sitong. Dynamic Motion Error Traceability of CNC Machine Tool Feed System under Electromechanical Rigid-flexible Coupling Analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1577-1584. doi: 10.13433/j.cnki.1003-8728.20200488

数控机床机电-刚柔耦合特性分析下的进给系统动态运动误差溯源方法

doi: 10.13433/j.cnki.1003-8728.20200488
基金项目: 

国家自然科学基金项目 51705262

浙江省自然科学基金项目 LY20E050005

详细信息
    作者简介:

    卢成伟(1997-), 硕士研究生, 研究方向为数控机床误差补偿技术, luchengwei188@163.com

    通讯作者:

    项四通, 副教授, 博士, xiangsitong@nbu.edu.cn

  • 中图分类号: TG659

Dynamic Motion Error Traceability of CNC Machine Tool Feed System under Electromechanical Rigid-flexible Coupling Analysis

  • 摘要: 动态运动误差是影响数控机床加工精度的关键因素,但因其具有时变性、随机性与动态性,研究难度大,其产生机理尚不明确,严重阻碍了机床加工精度的提升。本文旨在溯源进给系统的动态运动误差,提出了基于机电-刚柔耦合特性分析的数控机床进给系统动态运动误差溯源方法。通过不同进给速度下切削圆试件,基于三坐标标定与球杆仪圆测试分离出由机械结构引起的动态运动误差。同时,基于机电刚柔耦合动力学模型进行仿真分析,其仿真结果与实验分离结果吻合度达70%以上,从而验证了该方法的可行性与动力学模型的准确性。
  • 图  1  影响机床加工精度的动静态运动误差

    图  2  动静态运动误差分离原理

    图  3  直线进给系统的物理结构

    图  4  直线进给系统动力学模型

    图  5  直线进给系统的刚柔耦合动力学模型

    图  6  基于圆轨迹的动态运动误差仿真结果

    图  7  实际切削圆试件

    图  8  三坐标标定过程

    图  9  三坐标机标定的圆试件总误差

    图  10  球杆仪测试

    图  11  由机械结构引起的动态运动误差

    图  12  不同进给速度下由机械结构引起的动态运动误差的实验与仿真结果对比

    表  1  直线进给系统的机械结构参数

    参数 数值
    电机转动惯量Jm 4.26×10-4 kg·m2
    丝杠转动惯量Js 2.58×10-4 kg·m2
    反电动势系数Ke 1.42 V·s/rad
    电枢电阻Ra 0.65 Ω
    电枢电感La 0.011 2 H
    电机扭转常数Kt 2.35 Nm/A
    滚珠丝杠导程P 0.01 m
    工作台质量mt 2 000 kg
    联轴器扭转刚度k1 1 100 Nm/rad
    丝杠螺母连接刚度k2 5×107 N/m
    滚珠丝杠黏性阻尼Bs 0.235 Nm/(rad·s-1)
    工作台滑动阻尼Bt 1 000 N/(m·s-1)
    下载: 导出CSV

    表  2  PID三环控制参数

    参数 X Y
    位置环比例增益Kp/s-1 12 25
    速度环比例增益Kv/(A·s·rad-1) 138 65
    速度环积分时间常数τv/s 0.958 0.885
    电流环比例增益Ki/(V·A-1) 86 78
    电流环积分时间常数τi/s 0.967 0.872
    下载: 导出CSV

    表  3  不同进给速度下球杆仪圆测试的结果

    进给速度/(mm·min-1) 最大值/μm 最小值/μm 极差/μm 均值/μm
    800 82.6 -91.2 173.8 -6.7
    1 000 84.2 -90.4 174.6 -6.8
    1 200 82.6 -92.2 174.8 -6.9
    1 500 83.1 -90.3 173.4 -6.5
    1 800 83.4 -91.6 175.0 -7.0
    下载: 导出CSV
  • [1] 王晨升, 苏芳, 罗茹楠, 等. 五轴联动加工中心动力学建模及质量匹配优化[J]. 机械科学与技术, 2021, 40(1): 47-54 doi: 10.13433/j.cnki.1003-8728.20200020

    WANG C S, SU F, LUO R N, et al. Dynamic modeling and quality optimization of five-axis machining center[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 47-54 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200020
    [2] SCHWENKE H, KNAPP W, HAITJEMA H, et al. Geometric error measurement and compensation of machines-an update[J]. CIRP Annals, 2008, 57(2): 660-675 doi: 10.1016/j.cirp.2008.09.008
    [3] 王伟, 陶文坚, 李晴朝. 五轴数控机床动态精度检验试件特性研究[J]. 机械工程学报, 2017, 53(1): 101-109 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201701013.htm

    WANG W, TAO W J, LI Q Z. Research on characteristic of test specimen for five-axis CNC machine tools[J]. Journal of Mechanical Engineering, 2017, 53(1): 101-109 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201701013.htm
    [4] LIU Y, WAN M, XIAO Q B, et al. Identification and compensation of geometric errors of rotary axes in five-axis machine tools through constructing equivalent rotary axis (ERA)[J]. International Journal of Mechanical Sciences, 2019, 152: 211-227 doi: 10.1016/j.ijmecsci.2018.12.050
    [5] 蒋澄灿, 芮延年, 陈闯, 等. 大尺寸超精密非球面车磨复合机床Z轴系统稳定性分析[J]. 机械科学与技术, 2014, 33(4): 531-535 doi: 10.13433/j.cnki.1003-8728.2014.04.006

    JIANG C C, RUI Y N, CHEN C, et al. The Z axis system stability analysis of large aspheric car grinding compound machine tool with ultra precision[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(4): 531-535 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2014.04.006
    [6] IBARAKI S, YOSHIDA I, ASANO T. A machining test to identify rotary axis geometric errors on a five-axis machine tool with a swiveling rotary table for turning operations[J]. Precision Engineering, 2019, 55: 22-32 doi: 10.1016/j.precisioneng.2018.08.003
    [7] ALTINTAS Y, VERL A, BRECHER C, et al. Machine tool feed drives[J]. CIRP Annals, 2011, 60(2): 779-796 doi: 10.1016/j.cirp.2011.05.010
    [8] 李杰, 谢福贵, 刘辛军, 等. 五轴数控机床空间定位精度改善方法研究现状[J]. 机械工程学报, 2017, 53(7): 113-128 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201707017.htm

    LI J, XIE F G, LIU X J, et al. Analysis on the research status of volumetric positioning accuracy improvement methods for five-axis NC machine tools[J]. Journal of Mechanical Engineering, 2017, 53(7): 113-128 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201707017.htm
    [9] 苏芳, 王晨升, 郭刚, 等. 计及惯量比变化的直线进给系统动态误差分析[J]. 机械科学与技术, 2020, 39(12): 1882-1888 doi: 10.13433/j.cnki.1003-8728.20200187

    SU F, WANG C S, GUO G, et al. Dynamic error analysis of feed system considering change of inertia ratio[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1882-1888 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200187
    [10] ANDOLFATTO L, LAVERNHE S, MAYER J R R. Evaluation of servo, geometric and dynamic error sources on five-axis high-speed machine tool[J]. International Journal of Machine Tools and Manufacture, 2011, 51(10-11): 787-796
    [11] LI B, LUO B, MAO X Y, et al. A new approach to identifying the dynamic behavior of CNC machine tools with respect to different worktable feed speeds[J]. International Journal of Machine Tools and Manufacture, 2013, 72: 73-84
    [12] ALTINTAS Y, BRECHER C, WECK M, et al. Virtual machine tool[J]. CIRP Annals, 2005, 54(2): 115-138
    [13] BRECHER C, ESSER M, WITT S. Interaction of manufacturing process and machine tool[J]. CIRP Annals, 2009, 58(2): 588-607
    [14] ZHANG G P, HUANG Y M, SHI W H, et al. Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering[J]. International Journal of Machine Tools and Manufacture, 2003, 43(7): 699-706
    [15] 王磊, 刘海涛, 杨啸, 等. 轴间耦合下多轴联动机床的位置维动态特性分析[J]. 机械工程学报, 2014, 50(15): 89-96 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201415013.htm

    WANG L, LIU H T, YANG X, et al. Position-dependent dynamic analysis of multi-axis machine tool considering axial coupling[J]. Journal of Mechanical Engineering, 2014, 50(15): 89-96 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201415013.htm
    [16] 李杰, 谢福贵, 刘辛军, 等. 机电-刚柔耦合特性作用下线性进给系统动力学分析[J]. 机械工程学报, 2017, 53(17): 60-69 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201717010.htm

    LI J, XIE F G, LIU X J, et al. Dynamic modeling of a linear feed axis considering the characteristics of the electro-mechanical and rigid-flexible coupling[J]. Journal of Mechanical Engineering, 2017, 53(17): 60-69 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201717010.htm
    [17] 吴子英, 刘宏昭, 刘丽兰. 考虑摩擦影响的重型车床横向进给伺服系统建模与分析[J]. 机械工程学报, 2012, 48(7): 86-93 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201207013.htm

    WU Z Y, LIU H Z, LIU L L. Modeling and analysis of cross feed servo system of heavy duty lathe subjected to friction[J]. Journal of Mechanical Engineering, 2012, 48(7): 86-93 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201207013.htm
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  73
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回