留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

底座自适应式压电陶瓷激振装置研究

佘东生 洪以平 陈亚男 田江平

佘东生, 洪以平, 陈亚男, 田江平. 底座自适应式压电陶瓷激振装置研究[J]. 机械科学与技术, 2022, 41(10): 1623-1628. doi: 10.13433/j.cnki.1003-8728.20200483
引用本文: 佘东生, 洪以平, 陈亚男, 田江平. 底座自适应式压电陶瓷激振装置研究[J]. 机械科学与技术, 2022, 41(10): 1623-1628. doi: 10.13433/j.cnki.1003-8728.20200483
SHE Dongsheng, HONG Yiping, CHEN Ya'nan, TIAN Jiangping. Study on PZT Excitation Device with Self-adaptive Base Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1623-1628. doi: 10.13433/j.cnki.1003-8728.20200483
Citation: SHE Dongsheng, HONG Yiping, CHEN Ya'nan, TIAN Jiangping. Study on PZT Excitation Device with Self-adaptive Base Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1623-1628. doi: 10.13433/j.cnki.1003-8728.20200483

底座自适应式压电陶瓷激振装置研究

doi: 10.13433/j.cnki.1003-8728.20200483
基金项目: 

国家自然科学基金面上项目 52071064

辽宁省自然科学基金项目 2019-MS-007

辽宁省教育厅重点项目 LJKZ1009

详细信息
    作者简介:

    佘东生(1980-), 博士, 研究方向为MEMS动态测试技术, Mems-sds@163.com

  • 中图分类号: TH825

Study on PZT Excitation Device with Self-adaptive Base Structure

  • 摘要: 针对压电陶瓷底座激励装置中可动底座结构的实现方式和微结构的安装可靠性问题进行了研究,设计了一种由上联接块、钢球和下联接块组成的点接触式可动底座结构,以及一种带有L型支撑臂的弹性支承件,制作了基于压电陶瓷的底座激励装置,搭建了MEMS微结构动态特性测试系统,对激励装置的激振性能进行了测试实验,也对3种典型微悬臂梁的动态特性进行了测试实验。研究结果表明:所设计的激励装置能够使底座结构进行自适应调节,微结构安装区域的变形量也被大幅降低了,激励带宽可达到90 kHz,具备良好的激振性能。
  • 图  1  激励装置结构原理图

    图  2  微结构动态特性测试系统

    图  3  激励装置输出响应图

    图  4  微结构SEM图

    图  5  微结构1阶模态仿真结果

    图  6  1#微悬臂梁时频响应

    图  7  2#微悬臂梁时频响应

    图  8  3#微悬臂梁时频响应

    图  9  自由衰减振幅拟合曲线

  • [1] SILVA M A C, GUERRIERI D C, CERVONE A, et al. A review of MEMS micropropulsion technologies for cubesats and pocketqubes[J]. Acta Astronautica, 2018, 143: 234-243
    [2] JAVED Y, MANSOOR M, SHAH I A. A review of principles of MEMS pressure sensing with its aerospace applications[J]. Sensor Review, 2019, 39(5): 652-664
    [3] XU D H, WANG Y L, XIONG B, et al. MEMS-based thermoelectric infrared sensors: a review[J]. Frontiers of Mechanical Engineering, 2017, 12(4): 557-566
    [4] FIORILLO A S, CRITELLO C D, PULLANO S A. Theory, technology and applications of piezoresistive sensors: a review[J]. Sensors and Actuators A: Physical, 2018, 281: 156-175
    [5] 谭红波, 刘丽兰, 薛白鸽. 三稳态驰振能量捕获器发电性能研究[J]. 机械科学与技术, 2020, 39(10): 1539-1546 doi: 10.13433/j.cnki.1003-8728.20190294

    TAN H B, LIU L L, XUE B G. Exploring power generation performance of tristable galloping vibration energy harvester[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1539-1546 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190294
    [6] ALSALEEM F M, YOUNIS M I, IBRAHIM M I. A study for the effect of the PCB motion on the dynamics of MEMS devices under mechanical shock[J]. Journal of Microelectromechanical Systems, 2009, 18(3): 597-609
    [7] ALKHARABSHEH S A, YOUNIS M I. Dynamics of MEMS arches of flexible supports[J]. Journal of Microelectromechanical Systems, 2013, 22(1): 216-224
    [8] HALKON B J, ROTHBERG S J. Establishing correction solutions for Scanning Laser Doppler Vibrometer measurements affected by sensor head vibration[J]. Mechanical Systems and Signal Processing, 2021, 150: 107255
    [9] LYU C G, GAO J L, JIN J. Microvibration measurement based on multichannel projector-camera system[J]. Journal of Lightwave Technology, 2019, 37(11): 2713-2718
    [10] ROY R K, BEZBORUAH T. Non-contact method based on intensity modulation of light for measurement of vibration of a thin cantilever beam[J]. IET Science, Measurement & Technology, 2019, 13(5): 746-754
    [11] BURDESS J S, HARRIS A J, WOOD D, et al. A system for the dynamic characterization of microstructures[J]. Journal of Microelectromechanical Systems, 1997, 6(4): 322-328
    [12] WANG X D, LI N, WANG T, et al. Dynamic characteristic testing for MEMS micro-devices with base excitation[J]. Measurement Science and Technology, 2007, 18(6): 1740-1747
    [13] VAN DEN BRINK B, ALIJANI F, GHATKESAR M K. Experimental setup for dynamic analysis of micro-and nano-mechanical systems in vacuum, gas, and liquid[J]. Micromachines, 2019, 10(3): 162
    [14] 佘东生, 王晓东, 张习文, 等. 低温环境下MEMS微构件的动态特性及测试系统[J]. 光学 精密工程, 2010, 18(10): 2178-2184 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201010010.htm

    SHE D S, WANG X D, ZHANG X W, et al. Dynamic testing of MEMS micro-structure and its measurement system at low temperatures[J]. Optics and Precision Engineering, 2010, 18(10): 2178-2184 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201010010.htm
    [15] 张相庭. 结构振动力学[M]. 2版. 上海: 同济大学出版社, 2005

    ZHANG X T. Structural vibration mechanics[M]. 2nd ed. Shanghai: Tongji University Press, 2005 (in Chinese)
    [16] MADOU M J. Fundamentals of microfabrication and nanotechnology. Volume Ⅱ: manufacturing techniques for microfabrication and nanotechnology[M]. 3rd ed. Boca Raton: CRC Press, 2011
  • 加载中
图(9)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  67
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回