留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻量化卷积神经网络下的钢梁表面缺陷实时检测

宋小红 王森

宋小红,王森. 轻量化卷积神经网络下的钢梁表面缺陷实时检测[J]. 机械科学与技术,2022,41(4):602-609 doi: 10.13433/j.cnki.1003-8728.20200481
引用本文: 宋小红,王森. 轻量化卷积神经网络下的钢梁表面缺陷实时检测[J]. 机械科学与技术,2022,41(4):602-609 doi: 10.13433/j.cnki.1003-8728.20200481
SONG Xiaohong, WANG Sen. Real-time Detection of Surface Cracks in Steel Beam using Lightweight Convolutional Neural Network[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 602-609. doi: 10.13433/j.cnki.1003-8728.20200481
Citation: SONG Xiaohong, WANG Sen. Real-time Detection of Surface Cracks in Steel Beam using Lightweight Convolutional Neural Network[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 602-609. doi: 10.13433/j.cnki.1003-8728.20200481

轻量化卷积神经网络下的钢梁表面缺陷实时检测

doi: 10.13433/j.cnki.1003-8728.20200481
基金项目: 国家自然科学基金地区基金项目(52065035)、云南省教育厅科学研究基金项目(2019J0045)及云南省级人培项目(KKSY201801018)
详细信息
    作者简介:

    宋小红(1974−),副教授,研究方向为机电产品设计与开发、机器人理论研究与应用,sxh20051203@163.com

    通讯作者:

    王森,讲师,硕士生导师,博士,wangsen0401@126.com

  • 中图分类号: TG156

Real-time Detection of Surface Cracks in Steel Beam using Lightweight Convolutional Neural Network

  • 摘要: 针对钢梁在工程项目中应用广泛,其表面缺陷若未能及时发现将很可能带来安全隐患。本文利用一种具有跨阶段分层结构的轻量化卷积神经网络实现了钢梁表面缺陷的快速实时检测。首先使用跨阶段局部网络搭建用于特征提取的骨干网络,不仅能丰富了梯度更新路径,而且有助于浅层表面缺陷特征的提取。其次,将跨阶段分层模块作为特征提取器嵌入到跨阶段分层结构的其中一个分支中得到轻量化的特征提取模块,极大的提高了检测速度。最后,将多尺度特征融合与YOLO层相结合完成目标检测任务。实验表明,具有跨阶段分层结构的轻量化卷积神经网络最高mAP为93.59%,帧率为30.3 s−1。在检测性能差距不大的前提下,其检测速度较YOLOv3提高了4倍,与YOLOv4相比提高了4.5倍。
  • 图  1  单阶段与双阶段目标检测模型比较

    图  2  跨阶段局部分层结构

    图  3  跨阶段局部分层密集连接卷积结构

    图  4  轻量化跨阶段分层卷积模块

    图  5  钢梁图像裂纹采集装置

    图  6  钢梁表面裂纹数据集

    图  7  4种模型的GIoU损失曲线和精度曲线

    图  8  不同模型的定量比较

    图  9  明亮环境下的定性比较

    图  10  昏暗环境下的定性比较

    表  1  轻量化卷积神经网络结构

    layerFunctional
    Layer
    KernelFiltersInput shapeOutput shape
    0 Conv 3×3/2 32 416×416×3 208×208×32
    1 Conv 3×3/2 64 208×208×32 104×104×64
    2 CSP_Tiny1 104×104×64 104×104×128
    3 MaxPool 3×3/2 128 104×104×128 52×52×128
    4 CSP_Tiny2 52×52×128 52×52×256
    5 MaxPool 3×3/2 256 52×52×256 26×26×256
    6 CSP_Tiny3 52×52×256 26×26×512
    7 MaxPool 3×3/2 512 26×26×512 13×13×512
    8 Conv 3×3/1 512 26×26×512 13×13×512
    9 Conv 1×1/1 256 13×13×512 13×13×256
    10 Conv 3×3/1 512 13×13×256 13×13×512
    11 Predict_1
    12 Route layer_9 13×13×256
    13 Conv 1×1/1 128 13×13×256 13×13×128
    14 Upsample 13×13×128 26×26×128
    15 Concat Layer_14 ♁ Layer_6 26×26×384
    16 Conv 3×3/1 256 26×26×384 26×26×256
    17 Predict_2
    下载: 导出CSV

    表  2  4种不同模型的实验结果

    ModelsMax RecallMax PrecisionTPFPFNmAP50GIoUFPSBFLOPS
    YOLOv3 96% 94% 886 77 49 97.20% 74.98% 7.6/s 65.304
    YOLOv3-Tiny 84% 94% 780 66 155 92.20% 72.02% 27.7/s 7.099
    CSP-DenseNet 97% 90% 908 125 27 97.53% 73.30% 6.7/s 59.563
    CSP-Tiny 89% 93% 829 73 106 93.59% 74.81% 30.3/s 6.787
    下载: 导出CSV
  • [1] 孙小霞. 建筑物表面裂纹检测系统的设计[J]. 建筑工程技术与设计, 2020(26): 3213 doi: 10.12159/j.issn.2095-6630.2020.26.3121

    SUN X X. Design of building surface crack detection system[J]. Construction Engineering Technology and Design, 2020(26): 3213 (in Chinese) doi: 10.12159/j.issn.2095-6630.2020.26.3121
    [2] 张辉, 宋雅男, 王耀南, 等. 钢轨缺陷无损检测与评估技术综述[J]. 仪器仪表学报, 2019, 40(2): 11-25

    ZHANG H, SONG Y N, WANG Y N, et al. Review of rail defect non-destructive testing and evaluation[J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 11-25 (in Chinese)
    [3] 王森, 伍星, 张印辉, 等. 基于多尺度小波变换和结构化森林的表面裂纹分割[J]. 光学学报, 2018, 38(8): 233-242

    WANG S, WU X, ZHANG Y H, et al. Surface crack segmentation based on multi-scale wavelet transform and structured forest[J]. Acta Optica Sinica, 2018, 38(8): 233-242 (in Chinese)
    [4] WANG Y, ZHANG J Y, LIU J X, et al. Research on crack detection algorithm of the concrete bridge based on image processing[J]. Procedia Computer Science, 2019, 154: 610-616 doi: 10.1016/j.procs.2019.06.096
    [5] WANG S, WU X, ZHANG Y H, et al. A neural network ensemble method for effective crack segmentation using fully convolutional networks and multi-scale structured forests[J]. Machine Vision and Applications, 2020, 31(7-8): 60 doi: 10.1007/s00138-020-01114-0
    [6] REN Y P, HUANG J S, HONG Z Y, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234: 117367 doi: 10.1016/j.conbuildmat.2019.117367
    [7] 谢经明, 刘默耘, 何文卓, 等. 基于轻量化YOLO的X射线焊缝图像信息检测[J]. 华中科技大学学报(自然科学版), 2021, 49(1): 1-5

    XIE J M, LIU M Y, HE W Z, et al. X-ray weld image information detection based on lightweight Yolo[J]. Journal of Huazhong University of science and Technology (Nature Science Edition), 2021, 49(1): 1-5 (in Chinese)
    [8] ZHANG J, LIANG X, WANG M, et al. Coarse-to-fine object detection in unmanned aerial vehicle imagery using lightweight convolutional neural network and deep motion saliency[J]. Neurocomputing, 2020, 398: 555-565 doi: 10.1016/j.neucom.2019.03.102
    [9] XIANG H, ZHAO Y, YUAN Y L, et al. Lightweight fully convolutional network for license plate detection[J]. Optik, 2019, 178: 1185-1194 doi: 10.1016/j.ijleo.2018.10.098
    [10] ZHOU Q, WANG Y, FAN Y W, et al. AGLNet: Towards real-time semantic segmentation of self-driving images via attention-guided lightweight network[J]. Applied Soft Computing, 2020, 96: 106682 doi: 10.1016/j.asoc.2020.106682
    [11] LIU J, LI Q, CAO R, et al. MiniNet: An extremely lightweight convolutional neural network for real-time unsupervised monocular depth estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 255-267 doi: 10.1016/j.isprsjprs.2020.06.004
    [12] YANG A P, YANG B W, JI Z, et al. Lightweight group convolutional network for single image super-resolution[J]. Information Sciences, 2020, 516: 220-233 doi: 10.1016/j.ins.2019.12.057
    [13] 王艺皓, 丁洪伟, 李波, 等. 复杂场景下基于改进YOLOv3的口罩佩戴检测算法[J]. 计算机工程, 2020, 46(11): 12-22

    WANG Y H, DING H W, LI B, et al. Mask wearing detection algorithm based on improved YOLOv3 in complex scenes[J]. Computer Engineering, 2020, 46(11): 12-22 (in Chinese)
    [14] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014
    [15] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149 doi: 10.1109/TPAMI.2016.2577031
    [16] WEI L, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//14th European Conference on Computer Vision. Amsterdam: Springer, 2016
    [17] REDMON J, FARHADI A. YOLOv3: an incremental improvement[Z]. arXiv: 1804.02767, 2018
    [18] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [Z]. arXiv: 2004.10934, 2020
    [19] WANG C Y, LIAO H Y M, YEH I H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA, USA: IEEE, 2019
    [20] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016
    [21] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017
    [22] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  47
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-06
  • 录用日期:  2021-12-17
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回