留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变速率对海泡石的动态力学性能影响研究

徐长锋 周友行 宋佳林 肖雨琴 何东柯 张扬扬

徐长锋, 周友行, 宋佳林, 肖雨琴, 何东柯, 张扬扬. 应变速率对海泡石的动态力学性能影响研究[J]. 机械科学与技术, 2022, 41(6): 971-976. doi: 10.13433/j.cnki.1003-8728.20200469
引用本文: 徐长锋, 周友行, 宋佳林, 肖雨琴, 何东柯, 张扬扬. 应变速率对海泡石的动态力学性能影响研究[J]. 机械科学与技术, 2022, 41(6): 971-976. doi: 10.13433/j.cnki.1003-8728.20200469
XU Changfeng, ZHOU Youhang, SONG Jialin, XIAO Yuqin, HE Dongke, ZHANG Yangyang. Research on Influence of Strain Rate on Dynamic Mechanical Properties of Sepiolite[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(6): 971-976. doi: 10.13433/j.cnki.1003-8728.20200469
Citation: XU Changfeng, ZHOU Youhang, SONG Jialin, XIAO Yuqin, HE Dongke, ZHANG Yangyang. Research on Influence of Strain Rate on Dynamic Mechanical Properties of Sepiolite[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(6): 971-976. doi: 10.13433/j.cnki.1003-8728.20200469

应变速率对海泡石的动态力学性能影响研究

doi: 10.13433/j.cnki.1003-8728.20200469
基金项目: 

国家自然科学基金项目 51775468

湖南省教育厅科技研究项目 20A505

详细信息
    作者简介:

    徐长锋(1991-), 硕士研究生, 研究方向为非金属矿物加工, xcf927@126.com

    通讯作者:

    周友行, 教授, 博士生导师, zhouyouhang@xtu.edu.cn

  • 中图分类号: O382

Research on Influence of Strain Rate on Dynamic Mechanical Properties of Sepiolite

  • 摘要: 海泡石矿粉常采用机械冲击破碎方法制备, 粗矿石受到的应变速率不同会导致破碎程度不一致。为了研究应变速率对海泡石动态力学性能影响, 采用分离式霍普金森压杆(SHPB)对海泡石在五种不同应变速率下进行动态压缩试验。结果表明: 海泡石的动态抗压强度、弹性模量以及破碎特性均表现出明显的应变速率效应。动态抗压强度随应变速率的增加呈线性增长; 动态弹性模量随应变速率的增加呈指数增长; 随着应变速率的增加, 破碎形态由劈裂转为压碎, 应变速率越高压碎后的海泡石碎块尺寸越小且粉末增多。
  • 图  1  被夹持的试件

    图  2  加工完成后的试件

    图  3  海泡石的抗压和抗拉应力-位移曲线

    图  4  海泡石的应力-应变曲线

    图  5  海泡石在不同应变速率下的动态抗压强度

    图  6  不同岩石在不同应变速率下的动态抗压强度

    图  7  海泡石在不同应变速率下的动态弹性模量

    图  8  不同应变速率冲击载荷破碎后的海泡石试件

    表  1  海泡石的静态力学性能参数

    抗压应力/MPa 抗拉应力/MPa 密度/(kg·m-3) 硬度/HV
    13.11 6.56 2 080 14
    下载: 导出CSV

    表  2  海泡石试件SHPB试验结果

    试样编号 直径D/mm 高度H/mm 冲击气压ρ/MPa 平均应变速率ε /s-1 动态抗压强度σ/MPa 动态弹性模量E /MPa
    0.6-2 37.78 23.06 0.05 269 24.8 416.11
    0.6-5 37.81 23.11 0.1 356 34.0 601.18
    0.6-7 37.85 23.24 0.15 395 41.7 641.74
    0.6-14 37.93 23.15 0.2 409 46.2 780.40
    0.6-15 37.88 23.02 0.25 430 50.6 1095.23
    下载: 导出CSV

    表  3  海泡石碎块筛分试验结果

    试样编号 冲击气压ρ/MPa 平均应变速率·ε/s-1 各筛网上碎块(粉末)占比/%
    >12.5 mm 8~12.5 mm 5~8 mm 2~5 mm 1~2 mm ≤1 mm
    0.6-2 0.05 269 67.36 16.28 10.92 5.44 0 0
    0.6-5 0.1 356 51.82 25.77 16.51 5.90 0 0
    0.6-7 0.15 395 29.25 35.79 24.30 6.15 3.11 1.40
    0.6-14 0.2 409 26.29 32.61 26.22 6.43 4.32 4.13
    0.6-15 0.25 430 15.03 21.82 35.96 8.10 5.73 13.36
    下载: 导出CSV
  • [1] 贺洋. 低品质海泡石提纯及吸附性能研究[J]. 非金属矿, 2019, 42(4): 56-57 https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201904017.htm

    HE Y. Purification of low quality sepiolite and adsorption capacity research[J]. Non-Metallic Mines, 2019, 42(4): 56-57 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201904017.htm
    [2] 张学兵, 司炳艳. 海泡石的性状及应用研究[J]. 中外建筑, 2011(1): 135-136 doi: 10.3969/j.issn.1008-0422.2011.01.040

    ZHANG X B, SI B Y. The characteristics and application study of the marinated stones[J]. Chinese and Overseas Architecture, 2011(1): 135-136 (in Chinese) doi: 10.3969/j.issn.1008-0422.2011.01.040
    [3] 杨逾, 杨梦泽. 基于霍布金森压杆的砂岩动态力学特性数值模拟研究[J]. 硅酸盐通报, 2019, 38(9): 2955-2959 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201909039.htm

    YANG Y, YANG M Z. Numerical simulation study on dynamic mechanical properties of sandstone based on split Hopkinson pressure bar[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(9): 2955-2959 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201909039.htm
    [4] GONG F Q, SI X F, LI X B, et al. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 211-219 doi: 10.1016/j.ijrmms.2018.12.005
    [5] ZWIESSLER R, KENKMANN T, POELCHAU M H, et al. On the use of a split Hopkinson pressure bar in structural geology: high strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression[J]. Journal of Structural Geology, 2017, 97: 225-236 doi: 10.1016/j.jsg.2017.03.007
    [6] 苗磊刚, 牛园园, 石必明. 不同应变率下岩-煤-岩组合体冲击动力试验研究[J]. 振动与冲击, 2019, 38(17): 137-143 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917019.htm

    MIAO L G, NIU Y Y, SHI B M. Impact dynamic testsfor rock-coal-rock combination under different strain rates[J]. Journal of Vibration and Shock, 2019, 38(17): 137-143 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917019.htm
    [7] 孟庆山, 范超, 曾卫星, 等. 南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学, 2019, 40(1): 183-190 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901016.htm

    MENG Q S, FANG C, ZENG W X, et al. Tests on dynamic properties of coral-reef limestone in South China Sea[J]. Rock and Soil Mechanics, 2019, 40(1): 183-190 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901016.htm
    [8] DUAN K, LI Y C, WANG L, et al. Dynamic responses and failure modes of stratified sedimentary rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104060 doi: 10.1016/j.ijrmms.2019.104060
    [9] 石永奎, 马源鸿, 尹延春. 尺寸效应对煤层冲击倾向性测试结果的影响[J]. 煤炭科学技术, 2014, 42(2): 23-26 https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201402008.htm

    SHI Y K, MA Y H, YIN Y C. Research on size effect affected to seam bump-prone test results[J]. Coal Science and Technology, 2014, 42(2): 23-26 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201402008.htm
    [10] 吕太洪. 基于SHPB的混凝土及钢筋混凝土冲击压缩力学行为研究[D]. 合肥: 中国科学技术大学, 2018: 47-73

    LYU T H. Studies on the shock compression behaviors of concrete and steel reinforced concrete based on the split Hopkinson pressure bar[D]. Hefei: University of Science and Technology of China, 2018: 47-73 (in Chinese)
    [11] 武仁杰, 李海波, 李晓锋, 等. 冲击载荷作用下层状岩石破碎能耗及块度特征[J]. 煤炭学报, 2020, 45(3): 1053-1060 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003019.htm

    WU R J, LI H B, LI X F, et al. Broken energy dissipation and fragmentation characteristics of layered rock under impact loading[J]. Journal of China Coal Society, 2020, 45(3): 1053-1060 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003019.htm
    [12] ULUSAY R. The ISRM suggested methods for rock characteriza-tion, testing and monitoring: 2007-2014[M]. Cham: Springer, 2015: 1-143
    [13] 中华人民共和国国家准写质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 23561.1-2009煤和岩石物理力学性质测定方法第1部分: 采样一般规定[M]. 北京: 中国标准出版社, 2009: 1-4

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 23561.1-2009 Determination of physical and mechanical properties of coal and rock part 1: general provisions for sampling[M]. Beijing: Standards Press of China, 2009: 1-4 (in Chinese)
    [14] 张号, 平琦, 苏海鹏. 不同长径比石灰岩动态压缩SHPB试验研究[J]. 煤炭科学技术, 2018, 46(8): 38-43 https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201808006.htm

    ZHAN H, PING Q, SU H P. Study on dynamic compression SHPB test of limestone with different length diameter ratios[J]. Coal Science and Technology, 2018, 46(8): 38-43 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201808006.htm
    [15] LYU Y R, LIU J G, XIONG Z M. One-dimensional dynamic compressive behavior of dry calcareous sand at high strain rates[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 192-201 doi: 10.1016/j.jrmge.2018.04.013
    [16] LI X F, LI X, LI H B, et al. Dynamic tensile behaviours of heterogeneous rocks: the grain scale fracturing characteristics on strength and fragmentation[J]. International Journal of Impact Engineering, 2018, 118: 98-118
    [17] 董玉清, 朱哲明, 王蒙, 等. 中低速冲击载荷作用下SCT岩石试样Ⅰ型裂纹的动态扩展行为[J]. 中南大学学报(自然科学版), 2018, 49(11): 2821-2830 doi: 10.11817/j.issn.1672-7207.2018.11.024

    DONG Y Q, ZHU Z M, WANG M, et al. Mode Ⅰ crack dynamic propagation behavior of SCT specimens under medium-low speed impact load[J]. Journal of Central South University (Science and Technology), 2018, 49(11): 2821-2830 (in Chinese) doi: 10.11817/j.issn.1672-7207.2018.11.024
    [18] AI D H, ZHAO Y C, WANG Q F, et al. Crack propagation and dynamic properties of coal under SHPB impact loading: experimental investigation and numerical simulation[J]. Theoretical and Applied Fracture Mechanics, 2020, 105: 102393
    [19] 唐志强, 李皋, 石祥超, 等. 岩石单轴冲击加载破碎特征分析[J]. 应用力学学报, 2019, 36(5): 1076-1081 https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201905013.htm

    TANG Z Q, LI G, SHI X C, et al. Analysis of rock fragmentation characteristics under uniaxial impact loading[J]. Chinese Journal of Applied Mechanics, 2019, 36(5): 1076-1081(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201905013.htm
    [20] KHOSRAVANI M R, WEINBERG K. A review on split Hopkinson bar experiments on the dynamic characterisation of concrete[J]. Construction and Building Materials, 2018, 190: 1264-1283
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  28
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回