留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切削参数对FeCrBSi合金涂层表面完整性的影响研究

王敏

王敏. 切削参数对FeCrBSi合金涂层表面完整性的影响研究[J]. 机械科学与技术, 2022, 41(10): 1550-1556. doi: 10.13433/j.cnki.1003-8728.20200467
引用本文: 王敏. 切削参数对FeCrBSi合金涂层表面完整性的影响研究[J]. 机械科学与技术, 2022, 41(10): 1550-1556. doi: 10.13433/j.cnki.1003-8728.20200467
WANG Min. Study on Influence of Cutting Parameters on Surface Integrity of FeCrBSi Alloy Coating[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1550-1556. doi: 10.13433/j.cnki.1003-8728.20200467
Citation: WANG Min. Study on Influence of Cutting Parameters on Surface Integrity of FeCrBSi Alloy Coating[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1550-1556. doi: 10.13433/j.cnki.1003-8728.20200467

切削参数对FeCrBSi合金涂层表面完整性的影响研究

doi: 10.13433/j.cnki.1003-8728.20200467
基金项目: 

国家自然科学基金项目 12172035

山西省回国留学人员科研项目 HGKY20190201

详细信息
    作者简介:

    王敏(1978-), 高级工程师, 研究方向为先进制造理论与技术, wangmin@mail.buct.edu.cn

  • 中图分类号: TG147

Study on Influence of Cutting Parameters on Surface Integrity of FeCrBSi Alloy Coating

  • 摘要: 研究切削速度vc、进给量f和刀具前角γ0这3个因素的变化对FeCrBSi再制造涂层已加工表面质量(包括对表面粗糙度、表面形貌和残余应力再分布量)的影响规律。结果表明: FeCrBSi涂层表面粗糙度随着切削速度的增大和进给量的降低而改善。切削后已加工涂层表面出现明显的犁沟, 且沿进给方向的波峰和波谷呈明显的规律性。切削速度为60 m/min, 进给量从0.06 mm/r增加至0.12 mm/r, 涂层表层残余应力发生了由"线性分布"的残余拉应力向"勺形分布"的残余压应力转变。切削速度提高到70 m/min, 进给量的变化对涂层残余应力再分布的影响不明显。研究发现刀具前角的增大显著影响着涂层表面残余应力值, 而切削速度的增加显著影响着涂层表层最大残余压应力值。切削参数vc=70 m/min, f=0.12 mm/r, ap=0.2 mm, γ0=(10°~ 15°)是FeCrBSi合金涂层已加工表面质量状态改变的临界参数。
  • 图  1  工件及车削试验现场

    图  2  切削用量对表面粗糙度的影响

    图  3  积屑瘤

    图  4  原位增强基颗粒

    图  5  犁沟形貌

    图  6  增强颗粒的切断和脱粘及切削表面的滑擦

    图  7  使用ToolⅠ和ToolⅡ时切削速度对残余应力沿层深再分布的影响

    图  8  使用ToolⅠ和ToolⅡ时进给量对涂层残余应力沿层深再分布的影响

    图  9  刀具前角从5°增大到15°对涂层残余应力的影响

    表  1  FeCrBSi合金各元素的质量分数 %

    Fe Cr B Si Nb Bal
    80.0 5.0 5.0~13.0 1.0 3.0~5.0 ≤0.3
    下载: 导出CSV

    表  2  FeCrBSi合金力学性能

    拉伸强度σb/MPa 屈服波度σs/MPa 延伸水平δ/% 冲击韧性αk/(J·cm-2) 强度/ GPa
    4 000 325 6~9 ≥34 15.8
    下载: 导出CSV

    表  3  车削试验方案

    切削速度vc/(m·min-1) 进给速度f/(mm·r-1) 切削深度ap/mm 刀具类型γo/(°)
    60, 80 0.06, 0.12 0.2 5, 15
    下载: 导出CSV
  • [1] FANG F Z, GU C Y, HAO R, et al. Recent progress in surface integrity research and development[J]. Engineering, 2018, 4(6): 754-758 doi: 10.1016/j.eng.2018.11.005
    [2] 高尚, 耿宗超, 吴跃勤, 等. 石英玻璃超精密磨削加工的表面完整性研究[J]. 机械工程学报, 2019, 55(5): 186-195 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201905025.htm

    GAO S, GENG Z C, WU Y Q, et al. Surface integrity of quartz glass induced by ultra-precision grinding[J]. Journal of Mechanical Engineering, 2019, 55(5): 186-195 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201905025.htm
    [3] FILELD M, KAHLES J F. The surface integrity of machined and ground high strength steels[J]. DMIC Report, 1964, 210: 54-77
    [4] FILELD M, KAHLES J F, CAMMETT J T. A review of measuring methods for surface integrity[J]. Annals of the CIRP, 1972, 21(2): 219-238
    [5] 任小平. 高温合金GH4169车削加工表面完整性及抗疲劳加工工艺研究[D]. 济南: 山东大学, 2019

    REN X P. Study of turned surface integrity and anti-fatigue turn processing technology for GH4169 super alloy[D]. Ji'nan: Shandong University, 2019 (in Chinese)
    [6] 何临江. Ti2AlNb金属间化合物切削加工基础研究[D]. 南京: 南京航空航天大学, 2018: 4

    HE L J. Fundamental research on machining of Ti2AlNb intermetallic alloys[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 4 (in Chinese)
    [7] 杨慎亮, 李勋, 王子铭, 等. TC4侧铣表面完整性对试件疲劳性能的影响[J]. 表面技术, 2019, 48(11): 372-380 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201911043.htm

    YANG S L, LI X, WANG Z M, et al. Influence of side milling on surface integrity and fatigue behavior of TC4 specimens[J]. Surface Technology, 2019, 48(11): 372-380 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201911043.htm
    [8] CHOI Y. Effects of cutting speed on surface integrity and fatigue performance of hard machined surfaces[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(1): 139-146 doi: 10.1007/s12541-019-00045-9
    [9] 宋瑞宏, 赵本国, 柳铭, 等. 超音速火焰喷涂FeCrBSi合金涂层的高温磨损性能[J]. 稀有金属, 2016, 40(8): 763-769 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201608004.htm

    SONG R H, ZHAO B G, LIU M, et al. High temperature wear properties of FeCrBSi alloy coating by high velocity oxygen fuel[J]. Chinese Journal of Rare Metals, 2016, 40(8): 763-769 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201608004.htm
    [10] 王召煜, 李国禄, 王海斗, 等. 超音速等离子喷涂FeCrBSi涂层组织和残余应力分析[J]. 材料热处理学报, 2012, 33(1): 146-149 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201201028.htm

    WANG Z Y, LI G L, WANG H D, et al. Analysis of microstructure and residual stresses in supersonic plasma sprayed FeCrBSi coatings[J]. Transactions of Materials and Heat Treatment, 2012, 33(1): 146-149 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201201028.htm
    [11] FELDSHTEIN E, KARDAPOLAVA M, DYACHENKO O. On the effectiveness of multi-component laser modifying of Fe-based self-fluxing coating with hard particulates[J]. Surface and Coatings Technology, 2016, 307: 254-261 doi: 10.1016/j.surfcoat.2016.08.068
    [12] 王敏. 铁基非晶合金涂层切削工艺参数优化和切削力预测[J]. 中国机械工程, 2017, 28(21): 2627-2631+2638 doi: 10.3969/j.issn.1004-132X.2017.21.019

    WANG M. Cutting parameter optimization and cutting force prediction for fe-based amorphous alloy spray-fused coating[J]. China Mechanical Engineering, 2017, 28(21): 2627-2631+2638 (in Chinese) doi: 10.3969/j.issn.1004-132X.2017.21.019
    [13] 王敏. Fe基非晶态合金切削性实验研究[J]. 机床与液压, 2019, 47(11): 112-115 https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201911028.htm

    WANG M. Experimental study on machinability of Fe-based amorphous alloy[J]. Machine Tool & Hydraulics, 2019, 47(11): 112-115 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201911028.htm
    [14] 罗恒, 王优强, 张平. 基于单因素法对7A09铝合金铣削表面质量的研究[J]. 表面技术, 2020, 49(3): 327-333 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202003042.htm

    LUO H, WANG Y Q, ZHANG P. Study on surface quality of 7A09 aluminum alloy milling based on single factor method[J]. Surface Technology, 2020, 49(3): 327-333 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202003042.htm
    [15] 楚文斌, 林大钧, 陈浩, 等. 刀具参数对加工表面粗糙度影响的研究[J]. 图学学报, 2014, 35(1): 52-56 https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX201401011.htm

    CHU W B, LIN D J, CHEN H, et al. The effects of tool parameters to surface roughness[J]. Journal of Graphics, 2014, 35(1): 52-56 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX201401011.htm
    [16] URESH KUMAR REDDY N, KWANG-SUP S, YANG M Y. Experimental study of surface integrity during end milling of Al/SiC particulate metal-matrix composites[J]. Journal of Materials Processing Technology, 2008, 201(1-3): 574-579
    [17] 马晶. 淬硬钢模具硬态铣削机理及精加工过程优化[D]. 哈尔滨: 哈尔滨理工大学, 2016

    MA J. Mechanism research and optimization of hard milling process for hardened steel die[D]. Harbin: Harbin University of Science and Technology, 2016 (in Chinese)
    [18] WYEN C F, JAEGER D, WEGENER K. Influence of cutting edge radius on surface integrity and burr formation in milling titanium[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(1-4): 589-599
    [19] 贺爱东. CMQL切削机理及加工表面残余应力调控研究[D]. 广州: 华南理工大学, 2018: 4

    HE A D. Investigation on processing mechanism and control of residual stress in CMQL machining[D]. Guangzhou: South China University of Technology, 2018: 4 (in Chinese)
    [20] 孙雅洲, 刘海涛, 卢泽生. 基于热力耦合模型的切削加工残余应力的模拟及试验研究[J]. 机械工程学报, 2011, 47(1): 187-193 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201101029.htm

    SUN Y Z, LIU H T, LU Z S. Finite element simulation and experimental research of residual stresses in the cutting based on the coupled thermo-mechanical model[J]. Journal of Mechanical Engineering, 2011, 47(1): 187-193 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201101029.htm
    [21] NOORI H, JAIN M, NIELSEN K, et al. Effect of deformation-induced residual stress on peel strength of polymer laminated sheet metal[J]. The Journal of Adhesion, 2016, 92(10): 862-876
    [22] MILENIN A, KUZIAK R, PIDVYSOTS'KYY V, et al. Model of relaxation of residual stresses in hot-rolled strips[J]. Archives of Metallurgy and Materials, 2015, 60(3): 1935-1940
    [23] 黄坤. 切削加工表面层温度场建模和应力分布演变机理研究[D]. 武汉: 华中科技大学, 2016: 10

    HUANG K. Modeling of temperature field and researching on the mechanism of stress distribution and evolution in workpiece machined surface layer[D]. Wuhan: Huazhong University of Science and Technology, 2016: 10 (in Chinese)
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  60
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回