留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子群算法优化机器人路径规划的研究

巫光福 万路萍

巫光福,万路萍. 粒子群算法优化机器人路径规划的研究[J]. 机械科学与技术,2022,41(11):1759-1764 doi: 10.13433/j.cnki.1003-8728.20200465
引用本文: 巫光福,万路萍. 粒子群算法优化机器人路径规划的研究[J]. 机械科学与技术,2022,41(11):1759-1764 doi: 10.13433/j.cnki.1003-8728.20200465
WU Guangfu, WAN Luping. Research on Improved Particle Swarm Optimization Algorithm for Robot Path Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1759-1764. doi: 10.13433/j.cnki.1003-8728.20200465
Citation: WU Guangfu, WAN Luping. Research on Improved Particle Swarm Optimization Algorithm for Robot Path Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1759-1764. doi: 10.13433/j.cnki.1003-8728.20200465

粒子群算法优化机器人路径规划的研究

doi: 10.13433/j.cnki.1003-8728.20200465
基金项目: 国家自然科学基金项目(11461031)、江西省自然科学基金项目(20181BBE58018)、江西省教育厅科技计划项目(GJJ180442)及江西省教育厅科技重点项目(GJJ170492)
详细信息
    作者简介:

    巫光福(1977−),副教授,博士,研究方向为信息论与编码、人工智能等,wuguangfu@126.com

  • 中图分类号: TP242.6

Research on Improved Particle Swarm Optimization Algorithm for Robot Path Planning

  • 摘要: 针对标准粒子群算法在移动机器人路径规划问题上存在的收敛速度慢、易陷入“早熟”现象以及路径不平滑等缺点,对粒子群优化算法进行改进,该方法在粒子陷入局部最优值时,对全局最优粒子的速度进行了轻微的干扰,从而提高收敛速度。为了平衡局部和全局搜索能力,提出了非线性惯性权重。最后提出一个考虑路径最短和平滑性的适应度函数。仿真结果表明,在一个动态环境中,改进之后的粒子群优化算法收敛快,并能避开障碍物,寻找到符合要求的最优路径。
  • 图  1  环境模型

    图  2  标准粒子群算法

    图  3  一个粒子位置移动概念

    图  4  两种惯性权重的变化曲线

    图  5  目标点与两个连续位置的夹角

    图  6  障碍物个数为5的路径寻优结果

    图  7  障碍物个数为8的路径寻优结果

    图  8  改进PSO算法路径寻优结果

    图  9  基本PSO的路径寻优结果

    表  1  路径规划的实验结果比较

    障碍物个数平均迭代次数搜索成功率η/%
    本文
    方法
    基本
    PSO
    本文方法基本PSO
    523 9694
    8589291
    1011199086
    下载: 导出CSV
  • [1] 朱大奇, 颜明重. 移动机器人路径规划技术综述[J]. 控制与决策, 2010, 25(7): 961-967

    ZHU D Q, YAN M Z. Survey on technology of mobile robot path planning[J]. Control and Decision, 2010, 25(7): 961-967 (in Chinese)
    [2] HOSSAIN M A, FERDOUS I. Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique[J]. Robotics and Autonomous Systems, 2015, 64: 137-141 doi: 10.1016/j.robot.2014.07.002
    [3] 赵晓, 王铮, 黄程侃, 等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6): 903-910

    ZHAO X, WANG Z, HUANG C K, et al. Mobile robot path planning based on an improved A* algorithm[J]. Robot, 2018, 40(6): 903-910 (in Chinese)
    [4] JEDDISARAVI K, ALITAPPEH R J, GUIMARÃES F G. Multi-objective mobile robot path planning based on A* search[C]// Proceedings of 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE). Mashhad: IEEE, 2016: 7-12
    [5] AHMAD H, PAJERI A N F M, OTHMAN N A, et al. Analysis of mobile robot path planning with artificial potential fields[M]// ZAIN Z M, AHMAD H, PEBRIANTI D, et al. Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018. Singapore: Springer, 2019: 181-196
    [6] 王永琦, 江潇潇. 基于混合灰狼算法的机器人路径规划[J]. 计算机工程与科学, 2020, 42(7): 1294-1301 doi: 10.3969/j.issn.1007-130X.2020.07.019

    WANG Y Q, JIANG X X. Robot path planning using a hybrid grey wolf optimization algorithm[J]. Computer Engineering & Science, 2020, 42(7): 1294-1301 (in Chinese) doi: 10.3969/j.issn.1007-130X.2020.07.019
    [7] LUO Q, WANG H B, ZHENG Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural Computing and Applications, 2020, 32(6): 1555-1566 doi: 10.1007/s00521-019-04172-2
    [8] 游晓明, 刘升, 吕金秋. 一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J]. 控制与决策, 2017, 32(3): 552-556

    YOU X M, LIU S, LV J Q. Ant colony algorithm based on dynamic search strategy and its application on path planning of robot[J]. Control and Decision, 2017, 32(3): 552-556 (in Chinese)
    [9] LAMINI C, BENHLIMA S, ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science, 2018, 127: 180-189 doi: 10.1016/j.procs.2018.01.113
    [10] 易欣, 郭武士, 赵丽. 利用自适应选择算子结合遗传算法的机器人路径规划方法[J]. 计算机应用研究, 2020, 37(6): 1745-1749

    YI X, GUO W S, ZHAO L. Robot motion planning based on adaptive selection operator combined with genetic algorithm[J]. Application Research of Computers, 2020, 37(6): 1745-1749 (in Chinese)
    [11] ELHOSENY M, THARWAT A, HASSANIEN A E. Bezier curve based path planning in a dynamic field using modified genetic algorithm[J]. Journal of Computational Science, 2018, 25: 339-350 doi: 10.1016/j.jocs.2017.08.004
    [12] 陈嘉林, 魏国亮, 田昕. 改进粒子群算法的移动机器人平滑路径规划[J]. 小型微型计算机系统, 2019, 40(12): 2550-2555 doi: 10.3969/j.issn.1000-1220.2019.12.014

    CHEN J L, WEI G L, TIAN X. Smooth path planning for mobile robots based on improved particle swarm optimization al-Gorithm[J]. Journal of Chinese Computer Systems, 2019, 40(12): 2550-2555 (in Chinese) doi: 10.3969/j.issn.1000-1220.2019.12.014
    [13] MO H W, XU L F. Research of biogeography particle swarm optimization for robot path planning[J]. Neurocomputing, 2015, 148: 91-99 doi: 10.1016/j.neucom.2012.07.060
    [14] KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942-1948
    [15] CLERC M, KENNEDY J. The particle swarm- explosion, stability, and convergence in a multidimensional complex space[J]. IEEE transactions on Evolutionary Computation, 2002, 6(1): 58-73 doi: 10.1109/4235.985692
    [16] 韩颜, 许燕, 周建平. 粒子群-蚁群融合算法的机器人路径规划[J]. 组合机床与自动化加工技术, 2020(2): 47-50

    HAN Y, XU Y, ZHOU J P. A fusion algorism of particle swam and ant colony optimization for robot path planning[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(2): 47-50 (in Chinese)
    [17] TANG B W, ZHANXIA Z, LUO J J. A convergence-guaranteed particle swarm optimization method for mobile robot global path planning[J]. Assembly Automation, 2017, 37(1): 114-129 doi: 10.1108/AA-03-2016-024
    [18] DEWANG H S, MOHANTY P K, KUNDU S. A robust path planning for mobile robot using smart particle swarm optimization[J]. Procedia Computer Science, 2018, 133: 290-297 doi: 10.1016/j.procs.2018.07.036
    [19] SHI Y H, EBERHART R. A modified particle swarm optimizer[C]// Proceedings of 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). Anchorage: IEEE, 1998: 69-73
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  172
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-05
  • 刊出日期:  2023-02-04

目录

    /

    返回文章
    返回