留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向铝合金加工的GRA-SVM-CPSO混合多目标优化方法

庄可佳 张服林 代星 翁剑

庄可佳,张服林,代星, 等. 面向铝合金加工的GRA-SVM-CPSO混合多目标优化方法[J]. 机械科学与技术,2022,41(11):1719-1726 doi: 10.13433/j.cnki.1003-8728.20200463
引用本文: 庄可佳,张服林,代星, 等. 面向铝合金加工的GRA-SVM-CPSO混合多目标优化方法[J]. 机械科学与技术,2022,41(11):1719-1726 doi: 10.13433/j.cnki.1003-8728.20200463
ZHUANG Kejia, ZHANG Fulin, DAI Xing, WENG Jian. Multi-objective Parameter Optimization of Aluminum Alloy Machining via GRA-SVM-CPSO Hybrid Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1719-1726. doi: 10.13433/j.cnki.1003-8728.20200463
Citation: ZHUANG Kejia, ZHANG Fulin, DAI Xing, WENG Jian. Multi-objective Parameter Optimization of Aluminum Alloy Machining via GRA-SVM-CPSO Hybrid Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1719-1726. doi: 10.13433/j.cnki.1003-8728.20200463

面向铝合金加工的GRA-SVM-CPSO混合多目标优化方法

doi: 10.13433/j.cnki.1003-8728.20200463
基金项目: 国家自然科学基金项目(52175482)
详细信息
    作者简介:

    庄可佳(1988−),副教授,硕士生导师,博士,研究方向为数字化制造,zhuangkj@whut.edu.cn

  • 中图分类号: TG501.2

Multi-objective Parameter Optimization of Aluminum Alloy Machining via GRA-SVM-CPSO Hybrid Method

  • 摘要: 为有效改善铝合金切削时不同指标优化出现的冲突问题,本文提出了一种新的多目标优化方法。首先,应用灰色关联分析(Grey relations analysis,GRA)将切削加工过程中切削力、表面粗糙度和材料去除率等多目标问题转化为灰色关联度(Grey relational grade,GRG)的单目标问题;然后,基于支持向量机模型(Support vector machine,SVM)建立切削参数与GRG之间关联模型;最后,以切削力和表面粗糙度最小化、材料去除率最大化为优化目标,采用混沌粒子群优化算法(Chaos particle swarm optimization, CPSO)优选得到的铝合金加工最优参数(切速为400 m/min,进给为0.15 mm/r,切深为1 mm)。将优化结果与粒子群算法(Particle swarm optimization,PSO)对比发现,CPSO算法具有更强的全局搜索能力,能够更快地收敛至全局最佳位置,获得更好的优化结果。
  • 图  1  实验装置图

    图  2  基于GRA-SVM-CPSO混合方法的多目标优化流程图

    图  3  SVM预测效果

    图  4  SVM预测误差

    图  5  CPSO与PSO迭代曲线图

    表  1  6061铝合金各元素的质量分数 %

    CuMnMgZnFeTiSiCrAl
    0.15 ~ 0.40.150.8 ~1.20.250.70.150.4 ~ 0.80.04 ~ 0.35其余
    下载: 导出CSV

    表  2  6061铝合金物理力学性能

    弹性模量屈服强度弯曲强度抗拉强度杨氏模量泊松比
    68.9 GPa240 MPa228 MPa290 MPa69 GPa0.33
    下载: 导出CSV

    表  3  切削参数的编码及水平

    切削参数编码水平
    −101
    切削速度Vc /(m·min−1 300 350 400
    进给速度f /(mm·r−1 0.15 0.2 0.25
    切削深度ap/mm 1 1.5 2
    下载: 导出CSV

    表  4  实验数据


    切削参数响应
    Vc/
    (m·min−1
    f/
    (mm·r−1
    ap/
    mm
    Fc/
    N
    Ra/
    μm
    MRR/
    (cm³·min−1
    14000.251.072.273.30100.00
    24000.201.061.922.4780.00
    34000.151.048.301.6460.00
    43500.251.069.023.3687.50
    53500.201.065.372.8670.00
    63500.151.054.591.8052.50
    73000.251.079.674.4175.00
    83000.201.068.853.0660.00
    93000.151.057.781.8945.00
    104000.252.0181.613.65200.00
    114000.202.0154.722.55160.00
    124000.152.0126.161.99120.00
    134000.251.5119.623.35150.00
    144000.201.5101.172.61120.00
    154000.151.586.431.7390.00
    163500.251.5121.313.03131.25
    173500.252.0182.893.63175.00
    183500.202.0154.742.90140.00
    193500.152.0125.732.35105.00
    203000.252.0198.473.64150.00
    213500.201.595.733.10105.00
    223500.151.582.822.0478.75
    233000.251.5119.473.59112.50
    243000.201.5104.402.8490.00
    253000.202.0159.162.64120.00
    263000.152.0128.472.0390.00
    273000.151.587.971.7767.50
    下载: 导出CSV

    表  5  灰色关联系数和灰色关联度

    试验编号比较序列偏差序列灰色关联系数GRG
    $ x_{i}^{*}\left(F_{c}\right)$$ x_{i}^{*}\left(R_{a}\right)$$ x_{i}^{*}(M R R)$$ \Delta_{i}\left(F_{c}\right)$$ \Delta_{i}\left(R_{a}\right)$$ \Delta_{i}(M R R)$$\gamma_{_{0 i} }\left(F_{c}\right)$$\gamma_{_{0 i} }\left(R_{a}\right)$$\gamma_{_{0 i} }(M R R)$
    10.840.400.350.160.600.650.760.450.440.51
    20.910.700.230.090.300.770.850.620.390.58
    31.001.000.100.000.000.901.001.000.360.74
    40.860.380.270.140.620.730.780.450.410.50
    50.890.560.160.110.440.840.810.530.370.52
    60.960.940.050.040.060.950.920.890.340.68
    70.790.000.190.211.000.810.710.330.380.43
    80.860.490.100.140.510.900.790.490.360.50
    90.940.910.000.060.091.000.890.840.330.65
    100.110.271.000.890.730.000.360.411.000.63
    110.290.670.740.710.330.260.410.600.660.59
    120.480.870.480.520.130.520.490.800.490.61
    130.530.380.680.470.620.320.510.450.610.52
    140.650.650.480.350.350.520.590.590.490.55
    150.750.970.290.250.030.710.660.940.410.67
    160.510.500.560.490.500.440.510.500.530.51
    170.100.280.840.900.720.160.360.410.760.54
    180.290.540.610.710.460.390.410.520.560.52
    190.480.740.390.520.260.610.490.660.450.54
    200.000.280.681.000.720.320.330.410.610.47
    210.680.470.390.320.530.610.610.490.450.50
    220.770.850.220.230.150.780.690.770.390.60
    230.530.290.440.470.710.560.510.410.470.46
    240.630.560.290.370.440.710.570.530.410.49
    250.260.640.480.740.360.520.400.580.490.51
    260.470.860.290.530.140.710.480.780.410.57
    270.740.950.150.260.050.850.650.910.370.64
    下载: 导出CSV

    表  6  参数设置

    PSO优化算法混沌搜索算法
    参数名参数值参数名参数值
    学习因子c c1=1.5 迭代次数M M=10
    c2=1.5
    惯性权重w wmin=0.1
    wmax=0.5
    种群规模N N=20 适应度
    阈值α
    α=0.01
    最大迭代
    次数Tmax
    Tmax=100
    位置边界POS 上边界POSmax=[400,0.25,2]
    下边界POSmin=[300,0.15,1] 平均粒距
    阈值β
    β=10
    速度边界V 速度上限Vmax=[40,0.025,0.1]
    速度下限Vmin=[−40,−0.025,−0.1]
    下载: 导出CSV
  • [1] 武仲河, 战中学, 孙全喜, 等. 铝合金在汽车工业中的应用与发展前景[J]. 内蒙古科技与经济, 2008(9): 59-60 doi: 10.3969/j.issn.1007-6921.2008.09.033

    WU Z H, ZHAN Z X, SUN Q X, et al. Application and development prospect of aluminum alloy in automobile industry[J]. Inner Mongolia Science Technology & Economy, 2008(9): 59-60 (in Chinese) doi: 10.3969/j.issn.1007-6921.2008.09.033
    [2] 董尧清. 铝制发动机的发展趋势[J]. 汽车零部件, 2013(7): 30 doi: 10.3969/j.issn.1674-1986.2013.07.017

    DONG Y Q. The development trend of aluminum engines[J]. Automobile Parts, 2013(7): 30 (in Chinese) doi: 10.3969/j.issn.1674-1986.2013.07.017
    [3] DIKSHIT M K, PURI A B, MAITY A. Optimization of surface roughness in ball-end milling using teaching-learning-based optimization and response surface methodology[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2017, 231(14): 2596-2607 doi: 10.1177/0954405416634266
    [4] KURAM E, OZCELIK B. Optimization of machining parameters during micro-milling of Ti6Al4V titanium alloy and Inconel 718 materials using Taguchi method[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2017, 231(2): 228-242 doi: 10.1177/0954405415572662
    [5] AZAM M, JAHANZAIB M, WASIM A, et al. Surface roughness modeling using RSM for HSLA steel by coated carbide tools[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(5-8): 1031-1041 doi: 10.1007/s00170-014-6707-5
    [6] CAMPOSECO-NEGRETE C. Optimization of cutting parameters using Response Surface Method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum[J]. Journal of Cleaner Production, 2015, 91: 109-117 doi: 10.1016/j.jclepro.2014.12.017
    [7] BAGABER S A, YUSOFF A R. Multi-objective optimization of cutting parameters to minimize power consumption in dry turning of stainless steel 316[J]. Journal of Cleaner Production, 2017, 157: 30-46 doi: 10.1016/j.jclepro.2017.03.231
    [8] 曾思锋, 吴昌硕, 尹建华, 等. 基于响应曲面法的高强度铝合金加工参数优化[J]. 机械工程师, 2019(10): 32-34+37

    ZENG S F, WU C S, YIN J H, et al. Parameters optimization of high strength aluminum alloy based on response surface method[J]. Mechanical Engineer, 2019(10): 32-34+37 (in Chinese)
    [9] GHANI J A, CHOUDHURY I A, HASSAN H H. Application of Taguchi method in the optimization of end milling parameters[J]. Journal of Materials Processing Technology, 2004, 145(1): 84-92 doi: 10.1016/S0924-0136(03)00865-3
    [10] ZHANG J Z, CHEN J C, KIRBY E D. Surface roughness optimization in an end-milling operation using the Taguchi design method[J]. Journal of Materials Processing Technology, 2007, 184(1-3): 233-239 doi: 10.1016/j.jmatprotec.2006.11.029
    [11] KIVAK T. Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts[J]. Measurement, 2014, 50: 19-28 doi: 10.1016/j.measurement.2013.12.017
    [12] 吴明明, 周涛. 基于田口试验法的铣削加工表面粗糙度与铣削参数优化[J]. 黑龙江工业学院学报, 2019, 19(10): 17-19

    WU M M, ZHOU T. Surface roughness and milling parameter optimization of milling based on Taguchi test method[J]. Journal of Heilongjiang University of Technology, 2019, 19(10): 17-19 (in Chinese)
    [13] TSAO C C. Grey–Taguchi method to optimize the milling parameters of aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(1-2): 41-48 doi: 10.1007/s00170-007-1314-3
    [14] CICA D, CALISKAN H, PANJAN P, et al. Multi-objective optimization of hard milling using Taguchi based grey relational analysis[J]. Tehnički Vjesnik, 2020, 27(2): 513-519
    [15] 莫蓉, 田国良, 孙惠斌. 基于遗传算法优化的BP神经网络在粗糙度预测上的应用[J]. 机械科学与技术, 2015, 34(5): 729-732

    MO R, TIAN G L, SUN H B. Application of BP neural network with genetic algorithm to roughness prediction[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(5): 729-732 (in Chinese)
    [16] XU L H, HUANG C Z, LI C W, et al. Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining[J]. Journal of Intelligent Manufacturing, 2021, 32(1): 77-90 doi: 10.1007/s10845-020-01559-0
    [17] GUPTA A K, GUNTUKU S C, DESU R K, et al. Optimisation of turning parameters by integrating genetic algorithm with support vector regression and artificial neural networks[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(1-4): 331-339 doi: 10.1007/s00170-014-6282-9
    [18] RADOVANOVIĆ M. Multi-objective optimization of multi-pass turning AISI 1064 steel[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4): 87-100 doi: 10.1007/s00170-018-2689-z
    [19] 张威. 基于曲面响应法分析6061铝合金铣削参数对表面粗糙度的影响[D]. 兰州: 兰州理工大学, 2017

    ZHANG W. Influence of milling parameters on surface roughness of 6061 aluminum alloy based on response surface methodology[D]. Lanzhou: Lanzhou University of Technology, 2017 (in Chinese)
    [20] DENG J L. Introduction to grey system theory[J]. The Journal of Grey System, 1989, 1(1): 1-24
    [21] TZENG C J, LIN Y H, YANG Y K, et al. Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis[J]. Journal of Materials Processing Technology, 2009, 209(6): 2753-2759 doi: 10.1016/j.jmatprotec.2008.06.046
    [22] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297
    [23] CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27
    [24] KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN'95-InternationalConference on Neural Networks. Perth: IEEE, 1995: 1942-1948
    [25] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]// Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya: IEEE, 1995: 39-43
    [26] SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]// Proceedings of the 1999 congress on evolutionary computation-CEC99. Washington: IEEE, 1999: 1945-1950
    [27] 刘军民, 高岳林. 混沌粒子群优化算法[J]. 计算机应用, 2008, 28(2): 322-325 doi: 10.3724/SP.J.1087.2008.00322

    LIU J M, GAO Y L. Chaos particle swarm optimization algorithm[J]. Journal of Computer Applications, 2008, 28(2): 322-325 (in Chinese) doi: 10.3724/SP.J.1087.2008.00322
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  45
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 刊出日期:  2023-02-04

目录

    /

    返回文章
    返回