留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击速度和温度对层合板冲后压剩余强度的影响

黄小娣 李月勇 杨斌

黄小娣, 李月勇, 杨斌. 冲击速度和温度对层合板冲后压剩余强度的影响[J]. 机械科学与技术, 2021, 40(7): 1137-1142. doi: 10.13433/j.cnki.1003-8728.20200461
引用本文: 黄小娣, 李月勇, 杨斌. 冲击速度和温度对层合板冲后压剩余强度的影响[J]. 机械科学与技术, 2021, 40(7): 1137-1142. doi: 10.13433/j.cnki.1003-8728.20200461
HUANG Xiaodi, LI Yueyong, YANG Bin. Effect of Impact Velocity and Temperature on Residual Strength Subjected to Compression After Impact of Laminates[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1137-1142. doi: 10.13433/j.cnki.1003-8728.20200461
Citation: HUANG Xiaodi, LI Yueyong, YANG Bin. Effect of Impact Velocity and Temperature on Residual Strength Subjected to Compression After Impact of Laminates[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1137-1142. doi: 10.13433/j.cnki.1003-8728.20200461

冲击速度和温度对层合板冲后压剩余强度的影响

doi: 10.13433/j.cnki.1003-8728.20200461
基金项目: 

广东省普高校特色创新类项目 2017KTSCX203

详细信息
    作者简介:

    黄小娣(1980-), 讲师, 研究方向为复合材料损伤机理研究、机械工程, Hunag_XD@126.com

  • 中图分类号: TB332

Effect of Impact Velocity and Temperature on Residual Strength Subjected to Compression After Impact of Laminates

  • 摘要: 为研究冲击速度和温度对层合板冲后压的影响,建立考虑温度影响的渐进损伤模型预测材料的损伤模式,并分析层合板在低速冲击下的损伤机理。首先将模型预测的冲后压位移应力曲线与实验进行对照,进一步分析不同冲击速度对压痕深度、分层区域面积和剩余强度的影响,最后在2.3 m/s冲击速度下分析了不同温度对剩余强度和分层区域面积的影响。
  • 图  1  几何尺寸和有限元模型

    图  2  位移应力曲线

    图  3  厚度方向位移云图

    图  4  不同冲击速度对压痕深度的影响

    图  5  不同冲击速度对分层损伤面积的影响

    图  6  不同冲击速度对侧压位移应力曲线的影响

    图  7  温度对层合板侧压位移应力曲线的影响

    图  8  温度对层合板冲击后分层损伤面积的影响

    表  1  刚度折减方案

    损伤类型 材料退化方式
    基体拉伸 E22=0.2E22, G12=0.2G12, G3=0.2G3
    基体压缩 E22=0.4E22, G12=0.4G12, G3=0.4G3
    纤维拉伸 Eii=0.07Eii(i=1, 2, 3), Gij=0.14Gij, υij=0.07υij(i, j=1, 2, 3, ij)
    纤维压缩 Eii=0.14Eii(i=1, 2, 3), Gij=0.14Gij, υij=0.14υij(i, j=1, 2, 3, ij)
    纤维基体剪切 G12=0.1G12, υ12=0.1υ12
    分层 E33=0.1E33, G3=0.1G23, G13=0.1G13, υ13=0.1υ13, υ23=0.1υ23
    下载: 导出CSV

    表  2  层合板材料参数

    E11/GPa E22/GPa ν G12/GPa XT/MPa XC/MPa YT/MPa YC/MPa S/MPa
    135 8.8 0.33 4.47 1 239 1 081 39 189 81
    下载: 导出CSV
  • [1] 庄茁, 宋恒旭, 彭涛, 等. 复合材料低速冲击损伤研究及等效模型的应用[J]. 工程力学, 2012, 29(S2): 15-22 doi: 10.6052/j.issn.1000-4750.2012.06.ST02

    ZHUANG Z, SONG H X, PENG T, et al. Damage of composite under low-velocity impact and application of mechanical equivalent model[J]. Engineering Mechanics, 2012, 29(S2): 15-22 (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.06.ST02
    [2] MENDES P A A E, DONADON M V. Numerical prediction of compression after impact behavior of woven composite laminates[J]. Composite Structures, 2014, 113: 476-491 doi: 10.1016/j.compstruct.2014.03.051
    [3] DALE M, ACHA B A, CARLSSON L A. Low velocity impact and compression after impact characterization of woven carbon/vinylester at dry and water saturated conditions[J]. Composite Structures, 2012, 94(5): 1582-1589 doi: 10.1016/j.compstruct.2011.12.025
    [4] KHONDKER O A, LEONG K H, HERSZBERG I, et al. Impact and compression-after-impact performance of weft-knitted glass textile composites[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(5): 638-648 doi: 10.1016/j.compositesa.2004.07.006
    [5] DOGAN A, ARIKAN V. Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites[J]. Composites Part B: Engineering, 2017, 127: 63-69 doi: 10.1016/j.compositesb.2017.06.027
    [6] TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2015, 71: 212-226 doi: 10.1016/j.compositesa.2015.01.025
    [7] LIU H B, FALZON B G, TAN W. Predicting the Compression-After-Impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 189-202 doi: 10.1016/j.compositesa.2017.11.021
    [8] GHELLI D, MINAK G. Low velocity impact and compression after impact tests on thin carbon/epoxy laminates[J]. Composites Part B: Engineering, 2011, 42(7): 2067-2079 doi: 10.1016/j.compositesb.2011.04.017
    [9] ABIR M R, TAY T E, RIDHA M, et al. On the relationship between failure mechanism and compression after impact (CAI) strength in composites[J]. Composite Structures, 2017, 182: 242-250 doi: 10.1016/j.compstruct.2017.09.038
    [10] 王柱成, 温卫东. 2.5维机织复合材料冲击剩余强度试验研究[J]. 机械制造与自动化, 2020, 49(5): 47-49 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD202005012.htm

    WANG Z C, WEN W D. Test of wrap residual strength of 2.5D woven composites with initial impact damage[J]. Machine Building & Automation, 2020, 49(5): 47-49 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD202005012.htm
    [11] OUYANG T, BAO R, SUN W, et al. A fast and efficient numerical prediction of compression after impact (CAI) strength of composite laminates and structures[J]. Thin-Walled Structures, 2020, 148: 106588 doi: 10.1016/j.tws.2019.106588
    [12] 陈方, 姚卫星, 吴富强. 复合材料T型加筋低速边缘冲击及剩余压缩强度的数值仿真分析[J]. 材料导报, 2020, 34(20): 20130-20136 doi: 10.11896/cldb.20010014

    CHEN F, YAO W X, WU F Q. A progressive damage simulation method for the low velocity edge-impact damage and residual compression strength of composite T-stiffeners[J]. Materials Reports, 2020, 34(20): 20130-20136 (in Chinese) doi: 10.11896/cldb.20010014
    [13] ZHANG J Y, QI D X, ZHOU L W, et al. A progressive failure analysis model for composite structures in hygrothermal environments[J]. Composite Structures, 2015, 133: 331-342 doi: 10.1016/j.compstruct.2015.07.063
    [14] 余芬, 刘武帅, 王伟韬, 等. 热力耦合作用下复合材料搭接结构强度研究[J]. 机械科学与技术, 2019, 38(5): 796-802 doi: 10.13433/j.cnki.1003-8728.20180241

    YU F, LIU W S, WANG W T, et al. Study on strength of composite lap structures under thermal mechanical coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 796-802 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180241
    [15] BENKHEDDA A, TOUNSI A, ADDA BEDIA E A. Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates[J]. Composite Structures, 2008, 82(4): 629-635 doi: 10.1016/j.compstruct.2007.04.013
    [16] WARREN K C, LOPEZ-ANIDO R A, VEL S S, et al. Progressive failure analysis of three-dimensional woven carbon composites in single-blot, double-shear bearing[J]. Composites Part B: Engineering, 2016, 84: 266-276
    [17] JOSHI R, DUGGAL S K. Free vibration analysis of laminated composite plates during progressive failure[J]. European Journal of Mechanics-A Solid, 2020, 83: 104041 doi: 10.1016/j.euromechsol.2020.104041
    [18] KIM D H, JUNG K H, LEE I G, et al. Three-dimensional progressive failure modeling of glass fiber reinforced thermoplastic composites for impact simulation[J]. Composite Structures, 2017, 176: 757-767 doi: 10.1016/j.compstruct.2017.06.031
    [19] TSERPES K I, PAPANIKOS P, LABEAS G, et al. Fatigue damage accumulation and residual strength assessment of CFRP laminates[J]. Composite Structures, 2004, 63(2): 219-230 doi: 10.1016/S0263-8223(03)00169-7
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  23
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-01
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回