留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

响应面法在汽车侧面结构多目标优化中的应用

孙喜龙 王登峰 荣宝军 李汝恒

孙喜龙, 王登峰, 荣宝军, 李汝恒. 响应面法在汽车侧面结构多目标优化中的应用[J]. 机械科学与技术, 2022, 41(7): 1039-1047. doi: 10.13433/j.cnki.1003-8728.20200448
引用本文: 孙喜龙, 王登峰, 荣宝军, 李汝恒. 响应面法在汽车侧面结构多目标优化中的应用[J]. 机械科学与技术, 2022, 41(7): 1039-1047. doi: 10.13433/j.cnki.1003-8728.20200448
SUN Xilong, WANG Dengfeng, RONG Baojun, LI Ruheng. Applying Response Surface Method to Multi-objective Optimization of Automobile′s Side Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1039-1047. doi: 10.13433/j.cnki.1003-8728.20200448
Citation: SUN Xilong, WANG Dengfeng, RONG Baojun, LI Ruheng. Applying Response Surface Method to Multi-objective Optimization of Automobile′s Side Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1039-1047. doi: 10.13433/j.cnki.1003-8728.20200448

响应面法在汽车侧面结构多目标优化中的应用

doi: 10.13433/j.cnki.1003-8728.20200448
详细信息
    作者简介:

    孙喜龙(1976-), 高级工程师, 博士, 研究方向为汽车被动安全仿真技术, xilong.sun@faw-vw.com

  • 中图分类号: U462.3

Applying Response Surface Method to Multi-objective Optimization of Automobile′s Side Structure

  • 摘要: 针对车身侧面结构抗撞性能不足的问题,利用拉丁超立方试验设计方法以及整车仿真模型,建立13个设计变量7个响应的样本数据,并构建3阶多项式响应面近似模型,最后利用模拟退火优化算法,对侧面结构进行多目标优化。优化结果表明,在B柱和门槛区域,使用高强度钢板以及增加板厚的方法,有效提高车身的侧面抗撞性能;优化思路由传统的设计经验与仿真模拟、试验验证的组合方式转变为数学优化问题,降低优化方案对设计经验的依赖,有效提高优化效率和解的精度。
  • 图  1  侧面碰撞评价参考点

    图  2  B柱侵入量

    图  3  B柱b1侵入速度

    图  4  B柱b2侵入速度

    图  5  B柱b3侵入速度

    图  6  B柱b4侵入速度

    图  7  前门TV1侵入速度

    图  8  前门TV2侵入速度

    图  9  前门TV3侵入速度

    图  10  车门变形

    图  11  设计变量结构图

    图  12  各目标函数误差散点图

    图  13  各目标函数的迭代历程

    图  14  车身侧面变形

    图  15  B柱侵入速度

    图  16  车门测量点侵入速度

    图  17  初始、优化方案假人伤害值

    表  1  设计变量取值范围

    设计变量 变量名称 初始值 取值范围
    t1 B柱内板 1.25 1.0, 1.1, 1.2, 1.25
    t2 B柱外板 1.75 1.25, 1.5, 1.75, 2.0
    t3 B柱加强板 1.75 1.5, 1.75, 2.0, 2.5
    t4 门槛内板后段 1.25 1.0, 1.1, 1.2, 1.25
    t5 门槛 1.5 1.2, 1.25, 1.5, 1.75
    t6 门槛加强板 1.5 1.25, 1.5, 1.75, 2.0
    t7 门槛内板前段 1.0 0.8, 0.9, 1.0, 1.1
    t8 A柱加强板 1.75 1.5, 1.75, 2.0, 2.5
    m1 B柱内板 a a, b, c, d
    m2 B柱外板 c a, b, c, d
    m3 B柱加强板 b a, b, c, d
    m4 门槛 b a, b, c, d
    m5 A柱加强板 b a, b, c, d
    注: a~d分别代表DC03、HC260LAD、HC340LAD、HC420/780DP这4种材料。
    下载: 导出CSV

    表  2  3阶响应面模型的决定系数

    响应面模型 样本实测均值 R2决定系数
    db1 45.47 mm 0.96
    db2 115.98 mm 0.91
    db3 123.26 mm 0.88
    db4 81.04 mm 0.85
    Vb2 8.60 m/s 0.92
    Vb3 8.25 m/s 0.87
    M 22.80 kg 0.87
    下载: 导出CSV

    表  3  初始、优化方案仿真结果及近似模型计算结果

    目标函数 初始方案仿真结果 优化方案
    仿真结果 下降率 近似模型结果 相对误差
    db1/mm 56.5 31.9 44% 33.1 -3.8%
    db2/mm 137.1 54.7 60% 57.3 -4.8%
    db3/mm 146.3 62.4 57% 67.2 -7.7%
    db4/mm 108 40.6 62% 43.8 -7.9%
    vb1/(m·s-1) 5.7 6.6 -15% 6.2 6.1%
    vb2/(m·s-1) 9.6 7.1 26% 6.8 4.2%
    vb3/(m·s-1) 10.1 7.2 29% 6.7 6.9%
    vb4/(m·s-1) 7.5 6.0 20% 5.8 3.3%
    M/kg 23.3 25.1 -7.7% 23.2 -7.6%
    注: 相对误差为优化方案的近似模型计算结果与仿真结果对比。
    下载: 导出CSV
  • [1] 盈亮, 余洋, 张富博, 等. 梯度强度热成形零件抗撞性能的仿真与优化[J]. 汽车工程, 2016, 38(6): 686-691+730 doi: 10.3969/j.issn.1000-680X.2016.06.006

    YING L, YU Y, ZHANG F B, et al. Simulation and optimization of the crashworthiness of gradient strength hot-forming components[J]. Automotive Engineering, 2016, 38(6): 686-691+730 (in Chinese) doi: 10.3969/j.issn.1000-680X.2016.06.006
    [2] SUN H T, HU P, MA N, et al. Application of hot forming high strength steel parts on car body in side impact[J]. Chinese Journal of Mechanical Engineering, 2010, 23(2): 252-256 doi: 10.3901/CJME.2010.02.252
    [3] 马聪承, 兰凤崇, 陈吉清. 泡沫铝复合结构改善汽车侧撞安全的仿真研究[J]. 汽车工程, 2017, 39(4): 432-439+456 https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201704012.htm

    MA C C, LAN F C, CHEN J Q. Simulation study on the improvement of vehicle side impact safety by aluminum foam composite structure[J]. Automotive Engineering, 2017, 39(4): 432-439+456 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201704012.htm
    [4] 肖志, 刘洪斌, 孔春玉, 等. 泡沫铝填充薄壁梁斜向碰撞的仿真研究[J]. 湖南大学学报(自然科学版), 2015, 42(10): 9-15 doi: 10.3969/j.issn.1674-2974.2015.10.002

    XIAO Z, LIU H B, KONG C Y, et al. Simulation of foam-filled thin-walled columns subjected to oblique impacts[J]. Journal of Hunan University (Natural Sciences), 2015, 42(10): 9-15 (in Chinese) doi: 10.3969/j.issn.1674-2974.2015.10.002
    [5] 张君媛, 姜哲, 李仲玉, 等. 基于抗撞性的汽车B柱碳纤维加强板优化设计[J]. 汽车工程, 2018, 40(10): 1166-1171+1178 https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201810007.htm

    ZHANG J Y, JIANG Z, LI Z Y, et al. Optimization design of vehicle CFRP B-pillar stiffening panel for crashworthiness[J]. Automotive Engineering, 2018, 40(10): 1166-1171+1178 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201810007.htm
    [6] 胡玉梅, 姜亚洲, 禹慧丽, 等. 轿车侧面碰撞乘员舱分区刚度优化与匹配研究[J]. 汽车工程, 2014, 36(8): 950-956+949 https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201408010.htm

    HU Y M, JIANG Y Z, YU H L, et al. A study on the optimization and matching of subarea stiffness in the passenger compartment of a car for side impact[J]. Automotive Engineering, 2014, 36(8): 950-956+949 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201408010.htm
    [7] DENG X Q, POTULA S, GREWAL H, et al. Finite element analysis of occupant head injuries: parametric effects of the side curtain airbag deployment interaction with a dummy head in a side impact crash[J]. Accident Analysis & Prevention, 2013, 55: 232-241
    [8] 杨杏梅, 杨济匡, 任立海. 基于儿童与成人损伤防护的侧面气囊参数优化[J]. 中国机械工程, 2011, 22(14): 1748-1753 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201114026.htm

    YANG X M, YANG J K, REN L H. Optimization of design parameters of side airbags for protection of child and adult occupants[J]. China Mechanical Engineering, 2011, 22(14): 1748-1753 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201114026.htm
    [9] 葛如海, 陈宇航, 洪亮, 等. 侧面多腔室气囊的设计与优化研究[J]. 汽车工程, 2019, 41(11): 1313-1319 https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201911014.htm

    GE R H, CHEN Y H, HONG L, et al. A research on the design and optimization of multi-chamber side airbag[J]. Automotive Engineering, 2019, 41(11): 1313-1319 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201911014.htm
    [10] UMALE S, YOGANANDAN N, PINTAR F A, et al. Factors influencing the effectiveness of occupant retention under far- side impacts: a parametric study[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84: 235-248 doi: 10.1016/j.jmbbm.2018.05.021
    [11] 郄彦朝, 肖森, 陈勇, 等. 基于侧面碰撞壁障的机械假人损伤分布研[J]. 机械设计, 2020, 37(1): 21-25 https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ202001004.htm

    QIE Y C, XIAO S, CHEN Y, et al. Study on injury distribution of the mechanical dummy based on side-collision[J]. Journal of Machine Design, 2020, 37(1): 21-25 (in chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ202001004.htm
    [12] YILDIZ A R, SOLANKI K N. Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(1-4): 367-376 doi: 10.1007/s00170-011-3496-y
    [13] 周利辉, 成艾国, 陈涛, 等. 基于BP神经网络的侧碰多目标优化设计[J]. 中国机械工程, 2012, 23(17): 2122-2127 doi: 10.3969/j.issn.1004-132X.2012.17.022

    ZHOU L H, CHENG A G, CHEN T, et al. Multi-objective optimization of side impact based on BP network model[J]. China Mechanical Engineering, 2012, 23(17): 2122-2127 (in Chinese) doi: 10.3969/j.issn.1004-132X.2012.17.022
    [14] ZHUANG W M, SHI H D, XIE D X, et al. Research on the lightweight design of body-side structure based on crashworthiness requirements[J]. Journal of Shanghai Jiaotong University (Science), 2019, 24(3): 313-322 doi: 10.1007/s12204-019-2066-6
    [15] XIONG F, WANG D F, CHEN S M, et al. Multi-objective lightweight and crashworthiness optimization for the side structure of an automobile body[J]. Structural and Multidisciplinary Optimization, 2018, 58(4): 1823-1843 doi: 10.1007/s00158-018-1986-3
    [16] WANG S, WANG D F. Research on crashworthiness and lightweight of B-pillar based on MPSO with TOPSIS method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(11): 498 doi: 10.1007/s40430-019-2019-x
    [17] ZHOU G, ZHAO W Z, MA Z D, et al. Multi-objective reliability design optimization of a novel side door negative Poisson's ratio impact beam[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232(9): 1196-1205 doi: 10.1177/0954407017728159
    [18] 金浩, 向宇, 蒋红华, 等. 轿车前保险杠碰撞性能多目标优化[J]. 机械科学与技术, 2017, 36(6): 943-949 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201706020.htm

    JIN H, XIANG Y, JIANG H H, et al. Multi-objective optimization of side door bumper beam for a passenger car based on response surface method[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(6): 943-949 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201706020.htm
    [19] 王登峰, 蔡珂芳, 张帅, 等. 基于激光拼焊技术的汽车B柱结构优化设计[J]. 北京理工大学学报, 2018, 38(7): 691-697+708 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201807005.htm

    WANG D F, CAI K F, ZHANG S, et al. Structure design of automotive B-pillar based on tailor-welded blank technology[J]. Transactions of Beijing Institute of Technology, 2018, 38(7): 691-697+708 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201807005.htm
    [20] 孙喜龙. 汽车被动安全性的模块化建模方法与多目标优化研究[D]. 长春: 吉林大学, 2013

    SUN X L. Research on modular methodology and multi-objective optimization of automobile passive safety[D]. Changchun: Jilin university, 2013 (in Chinese)
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  59
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-22
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回