留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮毂锻造机器人欠秩耦合端拾器结构设计及优化

袁明新 张全兵 申一虎 申燚

袁明新, 张全兵, 申一虎, 申燚. 轮毂锻造机器人欠秩耦合端拾器结构设计及优化[J]. 机械科学与技术, 2022, 41(8): 1197-1204. doi: 10.13433/j.cnki.1003-8728.20200438
引用本文: 袁明新, 张全兵, 申一虎, 申燚. 轮毂锻造机器人欠秩耦合端拾器结构设计及优化[J]. 机械科学与技术, 2022, 41(8): 1197-1204. doi: 10.13433/j.cnki.1003-8728.20200438
YUAN Mingxin, ZHANG Quanbing, SHEN Yihu, SHEN Yi. Structural Design and Optimization of Under-rank Coupling End Picker for Forging Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1197-1204. doi: 10.13433/j.cnki.1003-8728.20200438
Citation: YUAN Mingxin, ZHANG Quanbing, SHEN Yihu, SHEN Yi. Structural Design and Optimization of Under-rank Coupling End Picker for Forging Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1197-1204. doi: 10.13433/j.cnki.1003-8728.20200438

轮毂锻造机器人欠秩耦合端拾器结构设计及优化

doi: 10.13433/j.cnki.1003-8728.20200438
基金项目: 

2018年国家重点研发计划"智能机器人"重点专项 2018YFB1309100

2019年江苏省科技成果转化专项资金项目 BA2019092

详细信息
    作者简介:

    袁明新(1978-), 副教授, 博士, 研究方向为机器人技术、多机器人系统, mxyuan78@163.com

  • 中图分类号: TP241

Structural Design and Optimization of Under-rank Coupling End Picker for Forging Robot

  • 摘要: 为了提高高温和振动环境中轮毂锻造机器人的夹持稳定性和安全性, 设计了一种轮毂锻造机器人欠秩耦合端拾器, 并进行了结构优化。首先, 将欠秩端拾器与弹簧杆件耦合, 进行了欠秩耦合端拾器的设计及其自适应抓取过程分析; 然后基于虚功原理, 建立了端拾器执行机构在自适应夹持状态下的接触力模型; 随后以接触力大小均衡性为要求建立结构参数优化模型, 并提出新自适应小世界算法及其优化流程; 最后利用自适应小世界优化算法完成了端拾器优化, 并将优化结果与经验法、Fmincon优化函数、遗传算法和基本小世界算法进行了比较。数值测试表明, 与其他4种算法相比, 自适应小世界算法的优化目标值最小, 且分别减少了97.4%、62.9%、52.3%和42.2%, 显示出小世界算法在欠秩耦合端拾器优化中的可行性和优越性; 而将所优化结构参数分别代入端拾器的接触力模型比较, 文中所优化端拾器不同接触点处接触力偏差最大值也最小, 且最大偏差分别减少了87.2%、82.6%、69.5%和42.1%, 满足了锻造机器人端拾器夹持时的接触力均衡性要求。
  • 图  1  轮毂锻造机器人欠秩耦合端拾器

    图  2  欠秩耦合端拾器单手指自适应夹取过程

    图  3  欠秩耦合端拾器自适应夹取

    图  4  欠秩耦合端拾器几何模型和静力学模型

    图  5  PL随迭代进程变化曲线

    图  6  4种智能优化方法进化曲线

    表  1  5种算法的端拾器优化对比

    算法 minf(X) σmax/ % h1/ mm h2/ mm h3/ mm a2/ mm a3/ mm a4/ mm a5/ mm β1/ rad β2/ rad β3/ rad γ1/ rad γ2/ rad α1/ rad φ2/ rad
    经验法 5.453 6× 10-2 48.4 55 35 25 70 60 50 40 1.5 1.5 0.6 0.6 1.5 0.8 1.2
    FOF 平均 4.313 3× 10-3 - - - - - - - - - - - - - - -
    最优 3.7847× 10-3 35.6 68.824 51.833 65.970 37.141 11.178 59.341 1.388 39.742 0.876 0.981 0.764 0.827 0.683 1.279
    GA 平均 3.3153× 10-3 - - - - - - - - - - - - - - -
    最优 2.946 7× 10-3 20.3 70.322 53.655 76.571 57.067 14.792 60.960 1.048 59.651 0.731 1.239 0.768 0.866 0.778 1.531
    SWA 平均 2.7324× 10-3 - - - - - - - - - - - - - - -
    最优 2.429 4× 10-3 10.7 65.266 48.471 57.502 37.975 10.812 60.944 1.291 56.515 0.418 1.098 0.727 0.996 0.554 1.387
    ASWA 平均 1.620 4× 10-3 - - - - - - - - - - - - - - -
    最优 1.4042× 10-3 6.2 54.991 53.957 78.054 45.861 9.959 78.592 1.242 54.601 0.776 1.079 0.885 1.249 0.3678 1.211
    下载: 导出CSV
  • [1] 王新云, 金俊松, 李建军, 等. 智能锻造技术及其产业化发展战略研究[J]. 锻压技术, 2018, 43(7): 112-120 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201807012.htm

    WANG X Y, JIN J S, LI J J, et al. Research on intelligent forging technology and its industrialization strategy[J]. Forging & Stamping Technology, 2018, 43(7): 112-120 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201807012.htm
    [2] 鲍佳蕾, 韩康, 郑承谱, 等. 基于变胞理论的欠驱动机械手设计[J]. 机械传动, 2020, 44(1): 90-93 https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD202001015.htm

    BAO J L, HAN K, ZHENG C P, et al. Design of underactuated manipulator based on metamorphic theory[J]. Journal of Mechanical Transmission, 2020, 44(1): 90-93 (in Chinesse) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD202001015.htm
    [3] BORISOV I I, BORISOV O I, GROMOV V S, et al. Design of versatile gripper with robust control[J]. IFAC-PapersOnLine, 2018, 51(22): 56-61 doi: 10.1016/j.ifacol.2018.11.518
    [4] YAO S J, CECCARELLI M, CARBONE G, et al. Grasp configuration planning for a low-cost and easy-operation underactuated three-fingered robot hand[J]. Mechanism and Machine Theory, 2018, 129: 51-69 doi: 10.1016/j.mechmachtheory.2018.06.019
    [5] HEIDARI H, POURIA M J, SHARIFI S, et al. Design and fabrication of robotic gripper for grasping in minimizing contact force[J]. Advances in Space Research, 2018, 61(5): 1359-1370 doi: 10.1016/j.asr.2017.12.024
    [6] TANAKA J. Three-fingered robot hand with gripping force generating mechanism using small gas springs-mechanical design and basic experiments[J]. Journal of Robotics and Mechatronics, 2019, 31(1): 118-134 doi: 10.20965/jrm.2019.p0118
    [7] REN Z Y, ZHOU C X, XIN S Y, et al. HERI hand: a Quasi dexterous and powerful hand with asymmetrical finger dimensions and under actuation[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017: 322-328
    [8] 郭钟华, 李小宁, 林浩鹏. 基于主动包络和负压塑形的软体适形夹持器[J]. 机械工程学报, 2019, 55(12): 215-221 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912024.htm

    GUO Z H, LI X N, LIN H P. Soft adaptive gripper with active enveloping arms and vacuum jamming technology[J]. Journal of Mechanical Engineering, 2019, 55(12): 215-221 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912024.htm
    [9] 宋九亚, 党丽楠, 齐景辰, 等. 线性空程传动耦合自适应机器人手研制[J]. 机械传动, 2018, 42(2): 156-162 https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201802030.htm

    SONG J Y, DANG L N, QI J C, et al. Development of a coupled and self-adaptive robot hand with linear empty-trip transmission[J]. Journal of Mechanical Transmission, 2018, 42(2): 156-162 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201802030.htm
    [10] 吴立成, 孔岩萱, 李霞丽. 全转动关节欠驱动手指机构及其运动学分析[J]. 机械工程学报, 2017, 53(1): 47-54 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201701006.htm

    WU L C, KONG Y X, LI X L. Fully rotational joint underactuated finger mechanism and its kinematics analysis[J]. Journal of Mechanical Engineering, 2017, 53(1): 47-54 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201701006.htm
    [11] SALIBA M A, DE SILVA C W. Quasi-dynamic analysis, design optimization, and evaluation of a two-finger underactuated hand[J]. Mechatronics, 2016, 33: 93-107
    [12] ALA R K, KIM D H, SHIN S Y, et al. A 3D-grasp synthesis algorithm to grasp unknown objects based on graspable boundary and convex segments[J]. Information Sciences, 2015, 295: 91-106
    [13] 袁明新, 谢丰, 姜烽, 等. 基于精英集聚效应的实数编码小世界优化算法[J]. 计算机工程与应用, 2019, 55(10): 61-66 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201910009.htm

    YUAN M X, XIE F, JIANG F, et al. Real Coding small world optimization algorithm based on elite gathering effect[J]. Computer Engineering and Applications, 2019, 55(10): 61-66 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201910009.htm
    [14] 袁明新, 杜海峰, 王孙安, 等. 一种基于种群熵的混沌小世界优化算法[J]. 西安交通大学学报, 2008, 42(9): 1137-1141 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT200809018.htm

    YUAN M X, DU H F, WANG S A, et al. Chaos small-world optimal algorithm based on population entropy[J]. Journal of Xi'an Jiaotong University, 2008, 42(9): 1137-1141 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT200809018.htm
    [15] 刘昊霖, 池金龙, 邓清勇, 等. 基于自适应局部搜索的进化多目标稀疏重构方法[J]. 计算机研究与发展, 2019, 56(7): 1420-1431 https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201907007.htm

    LIU H L, CHI J L, DENG Q Y, et al. Multi-objective evolutionary sparse recovery approach based on adaptive local search[J]. Journal of Computer Research and Development, 2019, 56(7): 1420-1431 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201907007.htm
    [16] YUAN M X, CHENG S, JIANG Y F, et al. A novel self-tuning proportional-integral-derivative controller based on a radial basis function network for trajectory tracking of service robots[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2014, 228(3): 167-181
    [17] MOHAMED K, ELGAMAL H, ELSHARKAWY A. Dynamic analysis with optimum trajectory planning of multiple degree-of-freedom surgical micro-robot[J]. Alexandria Engineering Journal, 2018, 57(4): 4103-4112
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  61
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-15
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回