留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WPD和SVM-PSO在微铣刀磨损在线监测中的应用

王二化 刘颉

王二化, 刘颉. WPD和SVM-PSO在微铣刀磨损在线监测中的应用[J]. 机械科学与技术, 2022, 41(7): 1076-1084. doi: 10.13433/j.cnki.1003-8728.20200431
引用本文: 王二化, 刘颉. WPD和SVM-PSO在微铣刀磨损在线监测中的应用[J]. 机械科学与技术, 2022, 41(7): 1076-1084. doi: 10.13433/j.cnki.1003-8728.20200431
WANG Erhua, LIU Jie. Application of WPD and SVM-PSO in Online Monitoring of Micro Milling Tool Wear[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1076-1084. doi: 10.13433/j.cnki.1003-8728.20200431
Citation: WANG Erhua, LIU Jie. Application of WPD and SVM-PSO in Online Monitoring of Micro Milling Tool Wear[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1076-1084. doi: 10.13433/j.cnki.1003-8728.20200431

WPD和SVM-PSO在微铣刀磨损在线监测中的应用

doi: 10.13433/j.cnki.1003-8728.20200431
基金项目: 

国家973项目 2011CB706803

常州市高端制造装备智能化技术重点实验室 CM20183004

常州信息职业技术学院科技创新团队项目 CCIT2021STIT010201

详细信息
    作者简介:

    王二化(1981-), 副教授, 博士, 研究方向为机械动力学、微铣削状态监测, wangerhua@czcit.edu.cn

  • 中图分类号: TG54

Application of WPD and SVM-PSO in Online Monitoring of Micro Milling Tool Wear

  • 摘要: 为提高微铣刀磨损状态的预测精度和计算效率,本文提出了一种基于小波包分解(Wavelet packet decomposition, WPD)和支持向量机-粒子群优化(Support vector machine-particle swarm optimization, SVM-PSO)的微铣刀磨损在线监测方法。首先根据刀具使用时长和磨损程度将微铣刀磨损分为初始磨损、轻度磨损、中度磨损、重度磨损和刀具失效5种状态;接着对采集到的振动信号进行WPD变换,提取小波包关键节点的能量比和小波包系数峭度作为磨损特征,并分析了不同切削参数对这2个特征的影响;最后利用SVM-PSO模型进行微铣刀磨损状态分类与预测。研究结果表明,和网格搜索法相比,本文提出的微铣刀磨损在线监测方法在计算精度和效率方面具有综合优势,可以为其它刀具磨损监测提供必要的理论基础和实践指导。
  • 图  1  总体研究方案

    图  2  小波包树与节点数据

    图  3  SVM-PSO的流程图

    图  4  实验装置

    图  5  机床z轴方向的加速度信号

    图  6  微铣刀切削刃磨损图像

    图  7  微铣削切削时刻加速度信号的小波包分解

    图  8  切削时刻加速度信号的小波包系数

    图  9  微铣刀5种磨损状态的能量比

    图  10  微铣刀磨损特征T1与磨损程度的关系图示

    图  11  主轴转速对微铣刀磨损特征T1的影响

    图  12  进给速度对微铣刀磨损特征T1的影响

    图  13  切削深度对微铣刀磨损特征T1的影响

    图  14  微铣刀5种磨损状态的小波包系数峭度

    图  15  主轴转速对微铣刀磨损特征T2的影响

    图  16  进给速度对微铣刀磨损特征T2的影响

    图  17  切削深度对微铣刀磨损特征T2的影响

    图  18  SVM, SVM-PSO和SVM-GS的计算结果

    图  19  微铣刀磨损特征选择对计算结果的影响

    图  20  训练样本数量对计算结果的影响

    表  1  4种核函数及其数学表达式

    核函数类型 数学表达式
    线性
    径向基函数
    多项式
    Sigmoid
    下载: 导出CSV

    表  2  模具钢NAK80的微铣削切削参数

    序号 主轴转速/ (r·min-1) 切削深度/mm 进给速度/ (mm·r-1) 采样频率/Hz
    1 16 000 0.010 0.003 5 000
    2 16 000 0.015 0.004 5 000
    3 16 000 0.020 0.005 5 000
    4 16 000 0.025 0.006 5 000
    5 16 000 0.030 0.007 5 000
    6 16 000 0.010 0.005 5 000
    7 16 000 0.015 0.006 5 000
    8 18 000 0.010 0.003 5 000
    9 18 000 0.015 0.004 5 000
    10 18 000 0.020 0.005 5 000
    11 18 000 0.025 0.006 5 000
    12 18 000 0.030 0.007 5 000
    13 18 000 0.010 0.006 5 000
    14 18 000 0.015 0.007 5 000
    15 20 000 0.010 0.003 5 000
    16 20 000 0.015 0.004 5 000
    17 20 000 0.020 0.005 5 000
    18 20 000 0.025 0.006 5 000
    19 20 000 0.030 0.007 5 000
    20 20 000 0.010 0.005 5 000
    21 20 000 0.015 0.006 5 000
    22 20 000 0.020 0.004 5 000
    23 21 000 0.010 0.003 5 000
    24 21 000 0.015 0.004 5 000
    25 21 000 0.020 0.005 5 000
    26 21 000 0.025 0.006 5 000
    27 21 000 0.030 0.007 5 000
    28 21 000 0.010 0.005 5 000
    29 21 000 0.015 0.006 5 000
    30 22 000 0.010 0.003 5 000
    31 22 000 0.015 0.004 5 000
    32 22 000 0.020 0.005 5 000
    33 22 000 0.025 0.006 5 000
    34 22 000 0.030 0.007 5 000
    35 22 000 0.010 0.005 5 000
    36 22 000 0.015 0.006 5 000
    下载: 导出CSV

    表  3  PSO的参数设置

    r1 r2 c1 c2 w
    0.5 0.5 2 2 1.2
    下载: 导出CSV
  • [1] ZHU K P, YU X L. The monitoring of micro milling tool wear conditions by wear area estimation[J]. Mechanical Systems and Signal Processing, 2017, 93: 80-91 doi: 10.1016/j.ymssp.2017.02.004
    [2] KURADA S, BRADLEY C. A machine vision system for tool wear assessment[J]. Tribology International, 1997, 30(4): 295-304 doi: 10.1016/S0301-679X(96)00058-8
    [3] GARCÍA-ORDÁS M T, ALEGRE E, GONZÂLEZ-CASTRO V, et al. A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5-8): 1947-1961 doi: 10.1007/s00170-016-9541-0
    [4] MOLDOVAN O G, DZITAC S, MOGA I, et al. Tool-wear analysis using image processing of the tool flank[J]. Symmetry, 2017, 9(12): 296 doi: 10.3390/sym9120296
    [5] D'ADDONA D M, ULLAH A M M S, MATARAZZO D. Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing[J]. Journal of Intelligent Manufacturing, 2017, 28(6): 1285-1301 doi: 10.1007/s10845-015-1155-0
    [6] ONG P, LEE W K, LAU R J H. Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(1): 1369-1379
    [7] LEE W K, RATNAM M M, AHMAD Z A. Detection of chipping in ceramic cutting inserts from workpiece profile during turning using fast Fourier transform (FFT) and continuous wavelet transform (CWT)[J]. Precision Engineering, 2017, 47: 406-423 doi: 10.1016/j.precisioneng.2016.09.014
    [8] LI X L. Development of current sensor for cutting force measurement in turning[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(1): 289-296 doi: 10.1109/TIM.2004.840225
    [9] DIMLA SR D E, LISTER P M. On-line metal cutting tool condition monitoring. : I: force and vibration analyses[J]. International Journal of Machine Tools and Manufacture, 2000, 40(5): 739-768 doi: 10.1016/S0890-6955(99)00084-X
    [10] ZHU K P, VOGEL-HEUSER B. Sparse representation and its applications in micro-milling condition monitoring: noise separation and tool condition monitoring[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1-4): 185-199 doi: 10.1007/s00170-013-5258-5
    [11] PRAKASH, KANTHABABU M. In-process tool condition monitoring using acoustic emission sensor in microendmilling[J]. Machining Science and Technology, 2013, 17(2): 209-227 doi: 10.1080/10910344.2013.780541
    [12] DURO J A, PADGET J A, BOWEN C R, et al. Multi-sensor data fusion framework for CNC machining monitoring[J]. Mechanical Systems and Signal Processing, 2016, 66-67: 505-520 doi: 10.1016/j.ymssp.2015.04.019
    [13] MALEKIAN M, PARK S S, JUN M B G. Tool wear monitoring of micro-milling operations[J]. Journal of Materials Processing Technology, 2009, 209(10): 4903-4914 doi: 10.1016/j.jmatprotec.2009.01.013
    [14] WANG L, LIANG M. Chatter detection based on probability distribution of wavelet modulus Maxima[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(6): 989-998 doi: 10.1016/j.rcim.2009.04.011
    [15] ZHOU Y Q, CHANG S H, WU S G, et al. FFT-ApEn analysis for the vibration signal of a rotating motor[J]. International Journal of Acoustics and Vibration, 2018, 23(2): 203-207
    [16] DZIEDZIECH K, JABLONSKI A, DWORAKOWSKI Z. A novel method for speed recovery from vibration signal under highly non-stationary conditions[J]. Measurement, 2018, 128: 13-22 doi: 10.1016/j.measurement.2018.06.024
    [17] ZHEN G, LI X B, YU T Y, et al. Vibration signal EMD filter detection method for blast furnace opening machine[M]//JIA Y M, DU J P, ZHANG W C. Proceedings of 2018 Chinese Intelligent Systems Conference. Singapore: Springer, 2019: 173-180
    [18] YAO Z H, MEI D Q, CHEN Z C. On-line chatter detection and identification based on wavelet and support vector machine[J]. Journal of Materials Processing Technology, 2010, 210(5): 713-719 doi: 10.1016/j.jmatprotec.2009.11.007
    [19] LIU J, HU Y M, WU B, et al. A hybrid health condition monitoring method in milling operations[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5): 2069-2080
    [20] 郭庆丰, 王成栋, 刘佩森. 时域指标和峭度分析法在滚动轴承故障诊断中的应用[J]. 机械传动, 2016, 40(11): 172-175 https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201611049.htm

    GUO Q F, WANG C D, LIU P S. Application of time domain index and kurtosis analysis method in the fault diagnosis of rolling bearing[J]. Journal of Mechanical Transmission, 2016, 40(11): 172-175 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201611049.htm
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  40
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回