留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

手性蜂窝结构的非气胎车轮有限元分析

张伟杰 汪久根 洪玉芳

张伟杰, 汪久根, 洪玉芳. 手性蜂窝结构的非气胎车轮有限元分析[J]. 机械科学与技术, 2022, 41(5): 779-785. doi: 10.13433/j.cnki.1003-8728.20200424
引用本文: 张伟杰, 汪久根, 洪玉芳. 手性蜂窝结构的非气胎车轮有限元分析[J]. 机械科学与技术, 2022, 41(5): 779-785. doi: 10.13433/j.cnki.1003-8728.20200424
ZHANG Weijie, WANG Jiugen, HONG Yufang. Finite Element Analysis of Non-pneumatic Wheel with Chiral Honeycomb Spokes[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(5): 779-785. doi: 10.13433/j.cnki.1003-8728.20200424
Citation: ZHANG Weijie, WANG Jiugen, HONG Yufang. Finite Element Analysis of Non-pneumatic Wheel with Chiral Honeycomb Spokes[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(5): 779-785. doi: 10.13433/j.cnki.1003-8728.20200424

手性蜂窝结构的非气胎车轮有限元分析

doi: 10.13433/j.cnki.1003-8728.20200424
基金项目: 

国家自然科学基金项目 51375436

浙江省重大科技专项 2017C01047

详细信息
    作者简介:

    张伟杰(1995-), 硕士研究生, 研究方向为仿生设计和有限元分析, zhangweijie12138@163.com

    通讯作者:

    汪久根, 教授, 博士生导师, 博士, me_jg@zju.edu.cn

  • 中图分类号: U463, TH122

Finite Element Analysis of Non-pneumatic Wheel with Chiral Honeycomb Spokes

  • 摘要: 非气胎车轮相较于充气式车轮, 具有安全性高, 无需充气, 低维护成本, 滚动阻力低等优点, 因此在特殊场景具有广阔前景。本文研究非气胎车轮, 使用蜂窝结构作为辐板以代替充气轮胎。设计了手性蜂窝结构作为非气胎车轮的辐板, 同时对手性蜂窝的各参数对性能的影响做了分析。基于六韧带手性蜂窝、四韧带手性蜂窝和四韧带反手性蜂窝结构, 设计了3种辐板结构。使用有限元软件ANSYS计算得到了非气胎车轮的承载力和最大Mises应力。在相同的垂直位移载荷条件下, 针对手性蜂窝的节圆半径及其壁厚参数做了有限元分析, 得出了支反力以及最大Mises应力关于这两个参数影响的曲线。研究结果可以为手性蜂窝作为辐板的非充气车轮的优化设计做参考。
  • 图  1  手性蜂窝的单元结构

    图  2  单个单元晶格的弹性模量与壁厚关系

    图  3  非充气式轮胎组成

    图  4  网格尺寸敏感度分析图

    图  5  NPT辐条的应变分布

    图  6  支反力-节圆半径曲线

    图  7  最大Mises应力-节圆半径曲线

    图  8  支反力-壁厚曲线

    图  9  最大Mises应力-壁厚曲线

    图  10  内凹式六角蜂窝NPT

    图  11  同质量支反力对比

    表  1  非充气轮胎材料部分力学性能

    材料 密度ρ/(kg·m-3) 弹性模量E/MPa 泊松比ν
    铝合金 2 800 7.2×10E4 0.33
    高强度钢 7 800 2.1×10E5 0.29
    聚氨酯 1 200 32 0.49
    橡胶 1 043 11.9 0.49
    下载: 导出CSV
  • [1] RHYNE T B, CRON S M. Development of a non-pneumatic wheel[J]. Tire Science and Technology, 2006, 34(3): 150-169 doi: 10.2346/1.2345642
    [2] JU J, KIM D M, KIM K. Flexible cellular solid spokes of a non-pneumatic tire[J]. Composite Structures, 2012, 94(8): 2285-2295 doi: 10.1016/j.compstruct.2011.12.022
    [3] JACKOWSKI J, WIECZOREK M, ŻMUDA M. Energy consumption estimation of non-pneumatic tire and pneumatic tire during rolling[J]. Journal of KONES Powertrain and Transport, 2018, 1(1): 159-168
    [4] MILLER W, SMITH C W, SCARPA F, et al. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs[J]. Composites Science and Technology, 2010, 70(7): 1049-1056, doi: 10.1016/j.compscitech.2009.10.022
    [5] PRALL D, LAKES R S. Properties of a chiral honeycomb with a poisson's ratio of-1[J]. International Journal of Mechanical Sciences, 1997, 39(3): 305-307, 309-314 doi: 10.1016/S0020-7403(96)00025-2
    [6] HECTOR K W, RESTREPO D, TEJEDOR BONILLA C, et al. Mechanics of chiral honeycomb architectures with phase transformations[J]. Journal of Applied Mechanics, 2019, 86(11): 111014 doi: 10.1115/1.4044024
    [7] ALDERSON A, ALDERSON K L, ATTARD D, et al. Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010, 70(7): 1042-1048 doi: 10.1016/j.compscitech.2009.07.009
    [8] GAO D W, ZHANG C W. Theoretical and numerical investigation on in-plane impact performance of chiral honeycomb core structure[J]. Journal of Structural Integrity and Maintenance, 2018, 3(2): 95-105 doi: 10.1080/24705314.2018.1461772
    [9] 卢子兴, 李康. 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017, 36(21): 16-22, 39 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201721003.htm

    LU Z X, LI K. In-plane dynamic crushing of chiral and anti-chiral honeycombs[J]. Journal of Vibration and Shock, 2017, 36(21): 16-22, 39 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201721003.htm
    [10] WU T Y, LI M X, ZHU X L, et al. Research on non-pneumatic tire with gradient anti-tetrachiral structures[J]. Mechanics of Advanced Materials and Structures, 2021, 28(22): 2351-2359 doi: 10.1080/15376494.2020.1734888
    [11] MOUSANEZHAD D, HAGHPANAH B, GHOSH R, et al. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach[J]. Theoretical and Applied Mechanics Letters, 2016, 6(2): 81-96 doi: 10.1016/j.taml.2016.02.004
    [12] HU L L, WU Z J, FU M H. Mechanical behavior of anti-trichiral honeycombs under lateral crushing[J]. International Journal of Mechanical Sciences, 2018, 140: 537-546 doi: 10.1016/j.ijmecsci.2018.03.039
    [13] KANYANTA V, IVANKOVIC A. Mechanical characterisation of polyurethane elastomer for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(1): 51-62 doi: 10.1016/j.jmbbm.2009.03.005
    [14] PINA-HERNÁNDEZ C, HERNÁNDEZ L, FLORES-VÉLEZ L M, et al. Processing and mechanical properties of natural rubber-ZnFe2O4nanocomposites[J]. Journal of Materials Engineering and Performance, 2007, 16(4): 470-476 doi: 10.1007/s11665-007-9070-y
    [15] 向仲兵, 安子军, 刘涛. 鸟巢结构式汽车免充气轮胎设计及性能分析[J]. 机械科学与技术, 2020, 39(11): 1782-1787 doi: 10.13433/j.cnki.1003-8728.20190328

    XIANG Z B, AN Z J, LIU T. Design and performance analysis of car nest structural non-pneumatic tire[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1782-1787 doi: 10.13433/j.cnki.1003-8728.20190328
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  47
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回