留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滚动电磁式振动能量采集器的结构建模和非线性分析

杨佳星 陈海川 宋英子 龙立

杨佳星, 陈海川, 宋英子, 龙立. 滚动电磁式振动能量采集器的结构建模和非线性分析[J]. 机械科学与技术, 2022, 41(7): 1003-1008. doi: 10.13433/j.cnki.1003-8728.20200417
引用本文: 杨佳星, 陈海川, 宋英子, 龙立. 滚动电磁式振动能量采集器的结构建模和非线性分析[J]. 机械科学与技术, 2022, 41(7): 1003-1008. doi: 10.13433/j.cnki.1003-8728.20200417
YANG Jiaxing, CHEN Haichuan, SONG Yingzi, LONG Li. Structural Modelling and Nonlinear Analysis of Rolling Electromagnetic Vibration Energy Harvester[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1003-1008. doi: 10.13433/j.cnki.1003-8728.20200417
Citation: YANG Jiaxing, CHEN Haichuan, SONG Yingzi, LONG Li. Structural Modelling and Nonlinear Analysis of Rolling Electromagnetic Vibration Energy Harvester[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1003-1008. doi: 10.13433/j.cnki.1003-8728.20200417

滚动电磁式振动能量采集器的结构建模和非线性分析

doi: 10.13433/j.cnki.1003-8728.20200417
详细信息
    作者简介:

    杨佳星(1995-), 硕士研究生, 研究方向为电工理论与新技术, yangjiaxingemail@163.com

    通讯作者:

    陈海川, 副教授, 硕士生导师, chenhaichuan@mail.xhu.edu.cn

  • 中图分类号: TM619

Structural Modelling and Nonlinear Analysis of Rolling Electromagnetic Vibration Energy Harvester

  • 摘要: 滚动电磁式振动能量采集器利用磁吸力作为回复力。基于非线性分析方法构建滚动电磁式振动能量采集器等效动力学模型, 并重新评估系统中运动磁体的运动方程; 利用有限元方法计算非线性磁力, 通过实验估算系统阻尼, 并分析阻尼对输出性能的影响; 在线圈两端连接阻性负载, 通过比较能量采集器的数值计算结果和实验结果分析洛伦兹力对输出的影响。结果表明: 考虑洛伦兹力对输出性能的影响后, 在13.5 Hz的条件下, 负载电压的计算值和实验值的最大误差从20%降到9%;最大功率对应的阻性负载值由114变为160。通过对比模拟和实验的结果证明, 考虑非线性效应的等效模型能为此类结构的实验研究做指导。
  • 图  1  滚动电磁式振动能量采集器结构组成图

    图  2  等效动力学模型

    图  3  模型建立

    图  4  磁力与位移关系图

    图  5  磁链与位移关系图

    图  6  实验平台

    图  7  实验测量的开路电压

    图  8  求解框图

    图  9  计算开路电压和实验开路电压对比图

    图  10  线圈中磁感应强度

    图  11  求解框图

    图  12  不同频率下的负载电压

    图  13  不同负载对应的输出

    表  1  计算感应电压和实验感应电压

    频率/Hz 振幅/mm 计算电压峰值/V 实验电压峰值/V
    7 ±1 mm 2.371 2.246
    8 ±1 mm 2.432 2.378
    9 ±1 mm 2.573 2.541
    10 ±1 mm 2.975 3.023
    11 ±1 mm 3.475 3.521
    12 ±1 mm 4.148 4.104
    13 ±1 mm 4.413 4.37
    13.5 ±1 mm 4.52 4.603
    14 ±1 mm 4.011 4.137
    14.5 ±1 mm 2.244 2.214
    15 ±1 mm 2.119 1.948
    16 ±1 mm 1.47 1.597
    下载: 导出CSV
  • [1] GILBERT J M, BALOUCHI F. Comparison of energy harvesting systems for wireless sensor networks[J]. International Journal of Automation and Computing, 2008, 5(4): 334-347 doi: 10.1007/s11633-008-0334-2
    [2] MITCHESON P D, YEATMAN E M, RAO G K, et al. Energy harvesting from human and machine motion for wireless electronic devices[J]. Proceedings of the IEEE, 2008, 96(9): 1457-1486 doi: 10.1109/JPROC.2008.927494
    [3] 张振宇, 苏宇锋, 叶志通. 电磁式振动能量采集器性能的改进[J]. 微纳电子技术, 2016, 53(11): 731-742, 772 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201611005.htm

    ZHANG Z Y, SU Y Y, YE Z T. Performance improvement of electromagnetic vibration energy harvesters[J]. Micronanoelectronic Technology, 2016, 53(11): 731-742, 772 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201611005.htm
    [4] 夏桦康. 压电-电磁复合振动能量采集及其电能提取技术研究[D]. 南京: 南京航空航天大学, 2017

    XIA Y K. Research on piezoelectric-electromagnetic hybrid vibration energy harvesters and their energy extraction techniques[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese)
    [5] ROUNDY S. On the effectiveness of vibration-based energy harvesting[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10): 809-823 doi: 10.1177/1045389X05054042
    [6] WILLIAMS C B, YATES R B. Analysis of a micro-electric generator for microsystems[J]. Sensors and Actuators A: Physical, 1996, 52(1-3): 8-11 doi: 10.1016/0924-4247(96)80118-X
    [7] BERDY D F, VALENTINO D J, PEROULIS D. Design and optimization of a magnetically sprung block magnet vibration energy harvester[J]. Sensors and Actuators A: Physical, 2014, 218: 69-79 doi: 10.1016/j.sna.2014.06.011
    [8] 王志霞, 王炜, 张琪昌. 一类电磁式薄膜振动能量采集器动力学建模与非线性分析[J]. 振动与冲击, 2019, 38(15): 127-133 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201915019.htm

    WANG Z X, WANG W, ZHANG Q C. Dynamic modeling and nonlinear analysis for a type electromagnetic membrane vibration energy harvester[J]. Journal of Vibration and Shock, 2019, 38(15): 127-133 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201915019.htm
    [9] 王佩红, 戴旭涵, 赵小林. 微型电磁式振动能量采集器的研究进展[J]. 振动与冲击, 2007, 26(9): 94-98+111 doi: 10.3969/j.issn.1000-3835.2007.09.023

    WANG P H, DAI X H, ZHAO X L. A survey of microelectromagnetic vibration energy harvesters[J]. Journal of Vibration and Shock, 2007, 26(9): 94-98+111 (in Chinese) doi: 10.3969/j.issn.1000-3835.2007.09.023
    [10] BEEBY S P, TORAH R N, TUDOR M J, et al. A micro electromagnetic generator for vibration energy harvesting[J]. Journal of Micromechanics and Microengineering, 2007, 17(7): 1257-1265 doi: 10.1088/0960-1317/17/7/007
    [11] ZHU D B, TUDOR M J, BEEBY S P. Strategies for increasing the operating frequency range of vibration energy harvesters: a review[J]. Measurement Science and Technology, 2010, 21(2): 022001 doi: 10.1088/0957-0233/21/2/022001
    [12] MANN B P, SIMS N D. Energy harvesting from the nonlinear oscillations of magnetic levitation[J]. Journal of Sound and Vibration, 2009, 319(1-2): 515-530 doi: 10.1016/j.jsv.2008.06.011
    [13] 苏六帅, 苏宇锋. 微型抗磁悬浮振动能量采集器结构设计与分析[J]. 微纳电子技术, 2013, 50(12): 770-775+780 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201312005.htm

    SU L S, SU Y F. Structure design and analysis of the micro-vibration energy harvester based on the diamagnetic levitation[J]. Micronanoelectronic Technology, 2013, 50(12): 770-775+780 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201312005.htm
    [14] DALLAGO E, MARCHESI M, VENCHI G. Analytical model of a vibrating electromagnetic harvester considering nonlinear effects[J]. IEEE Transactions on Power Electronics, 2010, 25(8): 1989-1997 doi: 10.1109/TPEL.2010.2044893
    [15] VOCCA H, NERI I, TRAVASSO F, et al. Kinetic energy harvesting with bistable oscillators[J]. Applied Energy, 2012, 97: 771-776 doi: 10.1016/j.apenergy.2011.12.087
    [16] 代显智, 张章, 刘小亚, 等. 非线性宽频振动能量采集技术的研究进展[J]. 中国科学: 技术科学, 2016, 46(8): 791-807 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201608002.htm

    DAI X Z, ZHANG Z, LIU X Y, et al. Research progress of broadband vibration energy harvesting technology using nonlinear method[J]. Scientia Sinica Technologica, 2016, 46(8): 791-807 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201608002.htm
    [17] 倪陶. 基于永磁吸引力的滚动式振动能量采集器[D]. 成都: 西华大学, 2018

    NI T. Rolling vibration energy harvester based on permanent magnet attraction[J]. Chengdu: Xihua University, 2018 (in Chinese)
    [18] PHAN T N, BADER S, OELMANN B. Performance of an electromagnetic energy harvester with linear and nonlinear springs under real vibration[J]. Sensors, 2020, 20(19): 5456 doi: 10.3390/s20195456
    [19] YANG X, WANG C, LAI S K. A magnetic levitation-based tristable hybrid energy harvester for scavenging energy from low-frequency structural vibration[J]. Engineering Structures, 2020, 221: 110789 doi: 10.1016/j.engstruct.2020.110789
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  31
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回