留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿式双离合器换挡优化控制

郝洪涛 马辉

郝洪涛, 马辉. 湿式双离合器换挡优化控制[J]. 机械科学与技术, 2022, 41(6): 936-947. doi: 10.13433/j.cnki.1003-8728.20200416
引用本文: 郝洪涛, 马辉. 湿式双离合器换挡优化控制[J]. 机械科学与技术, 2022, 41(6): 936-947. doi: 10.13433/j.cnki.1003-8728.20200416
HAO Hongtao, MA Hui. Optimizing Gearshift Control of Wet Dual Clutch Transmission[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(6): 936-947. doi: 10.13433/j.cnki.1003-8728.20200416
Citation: HAO Hongtao, MA Hui. Optimizing Gearshift Control of Wet Dual Clutch Transmission[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(6): 936-947. doi: 10.13433/j.cnki.1003-8728.20200416

湿式双离合器换挡优化控制

doi: 10.13433/j.cnki.1003-8728.20200416
基金项目: 

国家自然科学基金项目 51665048

详细信息
    作者简介:

    郝洪涛(1976-), 副教授, 硕士生导师, 博士研究生, 研究方向为车辆传递控制, haoht_03@126.com

  • 中图分类号: U46

Optimizing Gearshift Control of Wet Dual Clutch Transmission

  • 摘要: 双离合变速器的换挡过程控制是其品质提升的关键, 提出了一种基于摩擦参数估计的换挡控制方法。首先, 基于扩展卡尔曼滤波设计出了估计湿式双离合器换挡过程中两个离合器传递扭矩的方法; 其次基于Stribeck摩擦模型建立了湿式离合器摩擦因数模型, 利用递推最小二乘法估计出了换挡过程中相应的系数并计算得到离合器接合过程中的实时动态摩擦因数; 最后使用模型预测控制优化出换挡过程中两个离合器的需求扭矩, 结合估计获得的动态摩擦因数逆推出液压执行机构的需求油压, 进而达到改善车辆换挡品质的目的。基于MATLAB/Simulink平台搭建了装备湿式双离合变速器的车辆模型并对提出算法进行了仿真验证, 仿真实验结果表明使用该控制方法后离合器换挡过程的冲击度和滑摩功都有所降低, 验证了该方法对改善湿式双离合变速器换挡品质的有效性。
  • 图  1  双离合器传动系统结构

    图  2  闭环控制方案

    图  3  使用估计器对两离合器的扭矩估计结果

    图  4  离合器C1摩擦参数估计结果

    图  5  离合器C2摩擦参数估计结果

    图  6  离合器C1动态摩擦参数

    图  7  离合器C2动态摩擦参数

    图  8  参考轨迹跟踪效果

    图  9  MPC输出离合器优化扭矩

    图  10  使用和未使用闭环控制算法的车辆冲击度

    图  11  未使用闭环控制算法离合器滑摩功

    图  12  使用闭环控制算法离合器滑摩功

    表  1  摩擦参数分阶段标准

    数据点 标准 参数名
    近零滑动
    (μNZ, m)
    xmxm, max
    0≤||ωslip, m|-ωo||≤ωstick
    μs, est, m
    低速滑动
    (μLOW, m)
    xmxm, max
    ωstick < ||ωslip, m||≤ωL-H
    μd, est, m
    高速滑动
    (μHIGH.m)
    xm, maxxm≥0.85xm, max|ωslip, m| > ωL-H δv, est, m
    下载: 导出CSV

    表  2  仿真使用的参数值

    参数名 数值 参数名 数值
    Jc1 0.043 kg·m2 ωL-H 15 rad/s
    Jc2 0.047 kg·m2 Tc1min 0
    Jd 0.086 kg·m2 Tc1max 315 N·m
    Je 0.2 kg·m2 Tc2min 0
    Jo 0.04 kg·m2 Tc2max 315 N·m
    Jv 149.94 kg·m2 ωemin 30 rad/s
    ig1 3.69 ωemax 735 rad/s
    ig2 2.24 Ts 0.01 s
    it1 4.16 Np 10
    it2 3.76 Nc 2
    f 0.02 λξ 0.632
    Av 2.33 m2 Temax 250 Nm
    CD 0.3 Temin 0
    rv 0.312 -500 Nm
    λs 0.503 500 Nm
    ω0 0.051 rad/s
    下载: 导出CSV

    表  3  EKF估计误差统计

    参数 均方根误差/Nm 最大误差/Nm
    Tc1 2.86 5.44
    Tc2 3.12 6.60
    下载: 导出CSV

    表  4  估计结果

    参数 离合器C1 离合器C2
    μs, est 0.002 5 0.002 1
    μd, est 0.003 5 0.003 7
    γv, est -0.000 411 -0.000 435
    下载: 导出CSV
  • [1] 陈昊闻, 陈俐, 刘峰宇. 双离合器自动变速器换挡过程的内模控制[J]. 汽车工程, 2020, 42(4): 477-483 https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202004010.htm

    CHEN H W, CHEN L, LIU F Y. Internal model control during shifting of dual clutch automatic transmission[J]. Automotive Engineering, 2020, 42(4): 477-483 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202004010.htm
    [2] 郝洪涛, 马辉. 湿式双离合器的摩擦参数估计[J]. 机械科学与技术, 2021, 40(10): 1619-1628 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202110024.htm

    HAO H T, MA H. Friction parameters estimation of wet dual clutch[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(10): 1619-1628 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202110024.htm
    [3] 陆凯, 鲁植雄, 程准, 等. 离合器参数对HMCVT换段品质的影响规律研究[J]. 机械科学与技术, 2019, 38(11): 1695-1701 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201911010.htm

    LU K, LU Z X, CHENG Z, et al. Study on influence rules of clutch parameters on HMCVT shift performance[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1695-1701 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201911010.htm
    [4] GROSSPIETSCH W, SUDAU T. Dual clutch for power-shift transmissions-a traditional engaging element with new future[J]. VDI BERICHTE, 1565 (2000): 259-274
    [5] GALVAGNO E, VELARDOCCHIA M, VIGLIANI A. Dynamic and kinematic model of a dual clutch transmission[J]. Mechanism and Machine Theory, 2011, 46(6): 794-805 doi: 10.1016/j.mechmachtheory.2011.01.013
    [6] BARR M. Dynamic modeling, friction parameter estimation, and control of a dual clutch transmission[D]. Columbus: The Ohio State University, 2014
    [7] HU Y F, TIAN L, GAO B Z, et al. Nonlinear gearshifts control of dual-clutch transmissions during inertia phase[J]. ISA Transactions, 2014, 53(4): 1320-1331 doi: 10.1016/j.isatra.2014.03.017
    [8] LIU Q F, CHEN H, GAO B Z, et al. Shift control of dual clutch transmission using triple-step nonlinear method[J]. IFAC Proceedings Volumes, 2014, 47(3): 5884-5889 doi: 10.3182/20140824-6-ZA-1003.01810
    [9] HU H W, WU H Q, ZHANG Z Y, et al. Research on trajectory tracking control for wet clutch engagement based on SMC[J]. Procedia Engineering, 2011, 15: 2742-2746 doi: 10.1016/j.proeng.2011.08.516
    [10] KIM S, OH J, CHOI S. Gear shift control of a dual-clutch transmission using optimal control allocation[J]. Mechanism and Machine Theory, 2017, 113: 109-125 doi: 10.1016/j.mechmachtheory.2017.02.013
    [11] JIANG Z J, LIU Q F, DONG S Y, et al. Launch coordination control based on twin-clutch torque distribution for DCT vehicle[J]. IFAC-PapersOnLine, 2018, 51(31): 904-909 doi: 10.1016/j.ifacol.2018.10.086
    [12] SUN Z X, HEBBALE K. Challenges and opportunities in automotive transmission control[C]//Proceedings of the 2005, American Control Conference. Portland, OR, USA: IEEE, 2005: 3284-3289
    [13] OMPUSUNGGU A P, PAPY J M, VANDENPLAS S, et al. A novel monitoring method of wet friction clutches based on the post-lockup torsional vibration signal[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 345-368 doi: 10.1016/j.ymssp.2012.10.005
    [14] MARKLUND P, LARSSON R. Wet clutch friction characteristics obtained from simplified pin on disc test[J]. Tribology International, 2008, 41(9-10): 824-830 doi: 10.1016/j.triboint.2007.11.014
    [15] LOSERO R, LAUBER J, GUERRA T M, et al. Transmitted torque observer applied to real time engine and clutch torque estimation[J]. IFAC-PapersOnLine, 2015, 48(26): 73-78 doi: 10.1016/j.ifacol.2015.11.116
    [16] BARR M, SRINIVASAN K. Estimation of wet clutch friction parameters in automotive transmissions[R]. SAE Technical Paper 2015011146. SAE, 2015, doi: 10.4271/2015-01-1146
    [17] PARK J, CHOI S, OH J, et al. Adaptive torque tracking control during slip engagement of a dry clutch in vehicle powertrain[J]. Mechanism and Machine Theory, 2019, 134: 249-266 doi: 10.1016/j.mechmachtheory.2018.12.033
    [18] YANG Y B, LAM R C. Prediction of torque response during the engagement of wet friction clutch[R]. SAE Technical Paper 981097. SAE, doi: 10.4271/981097
    [19] BERGER E J, SADEGHI F, KROUSGRILL C M. Analytical and numerical modeling of engagement of rough, permeable, grooved wet clutches[J]. Journal of Tribology, 1997, 119(1): 143-148 doi: 10.1115/1.2832450
    [20] CAMERON T M, DEVLIN M T, MCCOMBS T, et al. Clutch parameter effects on torque and friction stability[R]. SAE Technical Paper 2011-01-0722. SAE, doi: 10.4271/2011-01-0722
    [21] WINSTEAD V, KOLMANOVSKY I V. Estimation of road grade and vehicle mass via model predictive control[C]//Proceedings of the 2005 IEEE Conference on Control Applications. Toronto, Canada: IEEE, 2005: 1588-1593
    [22] HAO H T, LU T L, ZHANG J W. Estimation of transmitted torques in dual-clutch transmission systems[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2015, 57(8): 464-471 doi: 10.1784/insi.2015.57.8.464
    [23] WOYDT M, WäSCHE R. The history of the Stribeck curve and ball bearing steels: The role of Adolf Martens[J]. Wear, 2010, 268(11-12): 1542-1546 doi: 10.1016/j.wear.2010.02.015
    [24] VAN BERKEL K, HOFMAN T, SERRARENS A, et al. Fast and smooth clutch engagement control for dual-clutch transmissions[J]. Control Engineering Practice, 2014, 22: 57-68 doi: 10.1016/j.conengprac.2013.09.010
    [25] 郝洪涛, 严冬, 马辉. 湿式双离合器扭矩传递特性对换挡品质影响的研究[J]. 传动技术, 2019, 33(3): 14-19 doi: 10.3969/j.issn.1006-8244.2019.03.002

    HAO H T, YAN D, MA H. Research on the influence of torque characteristics of wet double clutch on shift quality[J. Drive System Technique, 2019, 33(3): 14-19 (in Chinese) doi: 10.3969/j.issn.1006-8244.2019.03.002
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  57
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-24
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回