留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含隧道缺陷铝合金FSW搭接接头疲劳寿命预测

杨庆鹤 王瑞杰 赵红阳 武陇岗 覃秋雷

杨庆鹤,王瑞杰,赵红阳, 等. 含隧道缺陷铝合金FSW搭接接头疲劳寿命预测[J]. 机械科学与技术,2022,41(4):573-579 doi: 10.13433/j.cnki.1003-8728.20200413
引用本文: 杨庆鹤,王瑞杰,赵红阳, 等. 含隧道缺陷铝合金FSW搭接接头疲劳寿命预测[J]. 机械科学与技术,2022,41(4):573-579 doi: 10.13433/j.cnki.1003-8728.20200413
YANG Qinghe, WANG Ruijie, ZHAO Hongyang, WU Longgang, QIN Qiulei. Fatigue Life Prediction of Aluminum Alloy FSW Lap Joints with Tunneling Defects[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 573-579. doi: 10.13433/j.cnki.1003-8728.20200413
Citation: YANG Qinghe, WANG Ruijie, ZHAO Hongyang, WU Longgang, QIN Qiulei. Fatigue Life Prediction of Aluminum Alloy FSW Lap Joints with Tunneling Defects[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 573-579. doi: 10.13433/j.cnki.1003-8728.20200413

含隧道缺陷铝合金FSW搭接接头疲劳寿命预测

doi: 10.13433/j.cnki.1003-8728.20200413
基金项目: 国家自然科学基金项目(51065012)
详细信息
    作者简介:

    杨庆鹤(1994−),硕士研究生,研究方向为机械结构疲劳强度,(邮箱) he062010@foxmail.com

    通讯作者:

    王瑞杰,副教授,硕士生导师, wrj@kust.edu.cn

  • 中图分类号: TG405

Fatigue Life Prediction of Aluminum Alloy FSW Lap Joints with Tunneling Defects

  • 摘要: 本文对含隧道缺陷的铝合金搅拌摩擦焊(FSW)搭接试件进行恒幅疲劳测试,并对接头断裂位置进行了观测,分析隧道缺陷对于铝合金FSW搭接接头疲劳强度的影响。分别采用缺口应力法和线弹性断裂力学法建立了相应有限元模型,分析了模型应力集中区域的应力变化,利用有限元应力分析结果数据预测接头疲劳寿命。结果表明,两种方法都可以用来预测含隧道缺陷铝合金FSW焊件的疲劳寿命,缺口应力法预测结果与实验结果较为接近,线弹性断裂力学法预测结果较为保守。实验结果及有限元分析结果表明,在本试验中隧道缺陷对疲劳强度影响较小,钩状缺陷对疲劳强度影响较大。
  • 图  1  试件几何尺寸

    图  2  试件接头

    图  3  试验结果 S-N曲线

    图  4  虚拟缺口有限元模型

    图  5  有限元模型约束与加载

    图  6  铝合金疲劳曲线

    图  7  有限元最大主应力云图

    图  8  缺口应力法预测寿命

    图  9  有限元模型局部

    图  10  疲劳断口图

    图  11  有限元最大主应力云图

    图  12  线弹性断裂力学法预测寿命

    图  13  无隧道缺陷模型有限元应力云图

    图  14  隧道缺陷对寿命影响

    表  1  6061-T6铝合金化学成分 %

    ω(Al)ω(Si)ω(Fe)ω(Cu)ω(Mg)ω(Mn)ω(Ti)ω(Zn)ω(Cr)
    Bal0.650.40.210.840.110.060.040.15
    下载: 导出CSV

    表  2  6061-T6铝合金力学性能

    YS/MPaTS/MPaEL/%
    281 32814.0
    下载: 导出CSV

    表  3  加载方案一

    试件号最大载荷Fmax/N最小载荷Fmin/N载荷比R
    S001 900 90 0.1
    S002 1000 100 0.1
    S003 1200 120 0.1
    S004 1400 140 0.1
    S005 1540 154 0.1
    S006 1700 170 0.1
    S007 2000 200 0.1
    S008 2700 270 0.1
    S009 3400 340 0.1
    下载: 导出CSV

    表  4  加载方案二

    试件号载荷幅Fmax/N平均载荷Fmin/N载荷比R
    F001 1400 1800 0.13
    F002 1300 1800 0.16
    F003 1100 1800 0.24
    F004 1000 1800 0.29
    F005 900 1800 0.33
    F006 700 1800 0.44
    F007 690 1800 0.45
    F008 600 1800 0.5
    F009 500 1800 0.57
    F010 450 1800 0.6
    F011 400 1800 0.64
    F012 300 1800 0.71
    下载: 导出CSV
  • [1] ZHANG Y X, HUANG Y X, MENG X C, et al. Friction stir lap welding of AA2024-T4 with drastically different thickness[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(9-10): 3683-3691 doi: 10.1007/s00170-019-04865-x
    [2] 李亚杰, 李峰峰, 吴志生, 等. 工艺参数对AZ31镁合金搅拌摩擦焊接头组织和性能的影响[J]. 焊接学报, 2020, 41(4): 31-37 doi: 10.12073/j.hjxb.20191210003

    LI Y J, LI F F, WU Z S, et al. Influence of technological parameters on microstructure and mechanical properties of FSW AZ31 magnesium alloy joints[J]. Transactions of the China Welding Institution, 2020, 41(4): 31-37 (in Chinese) doi: 10.12073/j.hjxb.20191210003
    [3] LAIEGHI H, ALIPOUR S, MOSTAFAPOUR A. Heat-assisted friction stir welding of polymeric nanocomposite[J]. Science and Technology of Welding and Joining, 2020, 25(1): 56-65 doi: 10.1080/13621718.2019.1610613
    [4] 刘伟, 熊江涛, 赵华夏, 等. 铝合金薄板搅拌摩擦焊搭接界面缺陷与接头性能[J]. 焊接学报, 2018, 39(10): 11-15

    LIU W, XIONG J T, ZHAO H X, et al. Interface defects and mechanical properties in friction stir welded lap joint of thin aluminum alloy sheets[J]. Transactions of the China Welding Institution, 2018, 39(10): 11-15 (in Chinese)
    [5] BALOS S, SIDJANIN L. Effect of tunneling defects on the joint strength efficiency obtained with FSW[J]. Materiali in Tehnologije, 2014, 48(4): 491-496
    [6] JI S D, LI Z W. Reducing the hook defect of friction stir lap welded Ti-6Al-4V alloy by slightly penetrating into the lower sheet[J]. Journal of Materials Engineering and Performance, 2017, 26(2): 921-930 doi: 10.1007/s11665-017-2512-2
    [7] CHU Q, LI W Y, YANG X W, et al. Study of process/structure/property relationships in probeless friction stir spot welded AA2198 Al-Li alloy[J]. Welding in the World, 2017, 61(2): 291-298 doi: 10.1007/s40194-017-0423-3
    [8] ZHOU L, YU M R, JIANG Z H, et al. Influence of rotation speed on microstructure and mechanical properties of friction stir lap welded joints of AA 6061 and Ti6Al4V alloys[J]. Metallurgical and Materials Transactions A, 2019, 50(2): 733-745 doi: 10.1007/s11661-018-5052-y
    [9] RANA P K, NARAYANAN R G, KAILAS S V. Friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets at varying plunge speeds[J]. Thin-Walled Structures, 2019, 138: 415-429 doi: 10.1016/j.tws.2019.02.016
    [10] WANG R J, KANG H T, JIANG C. Fatigue life prediction for overlap friction stir linear welds of magnesium alloys[J]. Journal of Manufacturing Science and Engineering, 2016, 138(6): 061013 doi: 10.1115/1.4032469
    [11] 牛亚辉, 孙国芹. 局部法评定铝合金搅拌摩擦焊接头疲劳性能[J]. 机械科学与技术, 2020, 39(3): 374-378

    NIU Y H, SUN G Q. Assessment of fatigue performance of friction stir welded joints with local approaches[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 374-378 (in Chinese)
    [12] 王小娇, 董鹏, 王风兰, 等. AZ31镁合金搅拌摩擦焊接头疲劳裂纹扩展行为[J]. 热加工工艺, 2019, 48(5): 81-84

    WANG X J, DONG P, WANG F L, et al. Fatigue crack propagation of friction stir welded joint of AZ31 magnesium alloy[J]. Hot Working Technology, 2019, 48(5): 81-84 (in Chinese)
    [13] KIM Y G, KIM M H, JOO S M. Experimental investigation on the laser welding characteristics of 6061-T6 aluminum alloy sheets[J]. Materials Transactions, 2018, 59(9): 1446-1451 doi: 10.2320/matertrans.M2018048
    [14] LOMOLINO S, TOVO R, DOS SANTOS J. On the fatigue behaviour and design curves of friction stir butt-welded Al alloys[J]. International Journal of Fatigue, 2005, 27(3): 305-316 doi: 10.1016/j.ijfatigue.2004.06.013
    [15] 胡志力, 李锦, 万心勇, 等. 铝合金搅拌摩擦焊接头服役孔洞裂纹扩展规律[J]. 稀有金属材料与工程, 2019, 48(3): 892-897

    HU Z L, LI J, WAN X Y, et al. Crack propagation law of holes in aluminum alloy friction stir welding joint[J]. Rare Metal Materials and Engineering, 2019, 48(3): 892-897 (in Chinese)
    [16] 刘旭, 周春平, 张开林, 等. 缺口应力分析方法的发展及其在焊接结构疲劳分析中的应用[J]. 机械强度, 2016, 38(6): 1283-1288

    LIU X, ZHOU C P, ZHANG K L, et al. The development of notch stress method and its' application in the fatigue analysis of welded structures[J]. Journal of Mechanical Strength, 2016, 38(6): 1283-1288 (in Chinese)
    [17] FRICKE W. IIW recommendations for the fatigue assessment of welded structures by notch stress analysis: IIW-2006-09[M]. Delhi: Woodhead Publishing, 2012
    [18] SÁNCHEZ-SANTANA U, RUBIO-GONZÁLEZ C, MESMACQUE G, et al. Effect of fatigue damage induced by cyclic plasticity on the dynamic tensile behavior of materials[J]. International Journal of Fatigue, 2008, 30(10-11): 1708-1719 doi: 10.1016/j.ijfatigue.2008.03.011
    [19] HOBBACHER A F. Recommendations for fatigue design of welded joints and components[M]. 2nd ed. Switzerland: Springer International Publishing, 2016
    [20] EL HADDAD M H, TOPPER T H, SMITH K N. Prediction of non propagating cracks[J]. Engineering Fracture Mechanics, 1979, 11(3): 573-584 doi: 10.1016/0013-7944(79)90081-X
    [21] BHATTACHARYA B, ELLINGWOOD B. Continuum damage mechanics analysis of fatigue crack initiation[J]. International Journal of Fatigue, 1998, 20(9): 631-639 doi: 10.1016/S0142-1123(98)00032-2
    [22] 幸杰, 韩永典, 徐连勇, 等. 基于连续损伤力学的高低周复合疲劳损伤[J]. 焊接学报, 2017, 38(7): 63-66,76 doi: 10.12073/j.hjxb.20150708001

    XING J, HAN Y D, XU L Y, et al. High cycle and low cycle hybrid fatigue damage based on continuum damage mechanics[J]. Transactions of the China Welding Institution, 2017, 38(7): 63-66,76 (in Chinese) doi: 10.12073/j.hjxb.20150708001
    [23] 卫星, 姜苏. 基于断裂力学的钢桥面肋-板接头疲劳寿命预测[J]. 西南交通大学学报, 2017, 52(1): 16-22 doi: 10.3969/j.issn.0258-2724.2017.01.003

    WEI X, JIANG S. Fatigue life prediction on rib-to-deck welded joints of steel bridge deck based on LEFM[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 16-22 (in Chinese) doi: 10.3969/j.issn.0258-2724.2017.01.003
    [24] WANG H J, LIU X T, WANG X L, et al. Numerical method for estimating fatigue crack initiation size using elastic-plastic fracture mechanics method[J]. Applied Mathematical Modelling, 2019, 73: 365-377 doi: 10.1016/j.apm.2019.04.010
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  18
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 录用日期:  2021-12-16
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回