留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业机器人关节振动的鲁棒扰动观测器双环补偿控制

罗宝佳 吴震宇 詹明儒

罗宝佳,吴震宇,詹明儒. 工业机器人关节振动的鲁棒扰动观测器双环补偿控制[J]. 机械科学与技术,2022,41(4):530-536 doi: 10.13433/j.cnki.1003-8728.20200406
引用本文: 罗宝佳,吴震宇,詹明儒. 工业机器人关节振动的鲁棒扰动观测器双环补偿控制[J]. 机械科学与技术,2022,41(4):530-536 doi: 10.13433/j.cnki.1003-8728.20200406
LUO Baojia, WU Zhenyu, ZHAN Mingru. Research of Robust Disturbance Observer Double-loop Compensation Control for Joint Vibration of Industrial Robotics[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 530-536. doi: 10.13433/j.cnki.1003-8728.20200406
Citation: LUO Baojia, WU Zhenyu, ZHAN Mingru. Research of Robust Disturbance Observer Double-loop Compensation Control for Joint Vibration of Industrial Robotics[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 530-536. doi: 10.13433/j.cnki.1003-8728.20200406

工业机器人关节振动的鲁棒扰动观测器双环补偿控制

doi: 10.13433/j.cnki.1003-8728.20200406
基金项目: 国家自然科学基金项目(51775093)、湖北省技术创新专项 (重大项目)(2018AAA020)、湖北省自然科学基金项目(2017CFB324)、湖北省教育厅重点研发项目(D20171404)及贵州省基础研究计划(黔科合基础-ZK[2022]一般209)
详细信息
    作者简介:

    罗宝佳(1996− ),硕士研究生,研究方向为工业机器人振动控制,luobaojia123@126.com

    通讯作者:

    吴震宇,副教授,硕士研究生导师,wzy5221027@163.com

  • 中图分类号: TP241.2

Research of Robust Disturbance Observer Double-loop Compensation Control for Joint Vibration of Industrial Robotics

  • 摘要: 针对工业机器人工作过程中执行机构振动现象,利用现代控制理论对其进行抑振。在对机器人负载侧转速波动机理分析的基础上,建立了RV减速机动态角传动误差和啮合摩擦激励的数学模型;以考虑动态角传动误差和摩擦因素影响的伺服电机-RV减速机-负载所构成的机电耦合系统为控制对象,采用内环鲁棒控制+外环扰动观测器的双环控制策略抑制负载侧的转速波动。结果表明:该方法相比PI控制,不仅使机器人在启动阶段能够快速平稳地对指令做出响应,并且克服了时变刚度所引起的控制系统不确定性,使得稳态工作阶段的转速波动得到了明显削弱,降幅近50%。
  • 图  1  工业机器人关节处机电耦合传动系统

    图  2  角传动误差实测数据

    图  3  角传动误差的幅频特性

    图  4  原始系统框图

    图  5  原始系统负载侧的振动响应

    图  6  控制系统框图

    图  7  内环${P_e}$补偿后的系统框图

    图  8  观测误差

    图  9  负载侧速度响应仿真对比

    图  10  负载侧速度响应的幅频特性仿真对比

    图  11  试验装置

    图  12  实测数据对比

    表  1  机电耦合系统参数

    参数数值
    电机侧转动惯量 Jm $2.744 \times {10^{ - 5}}{\text{ kg}} \cdot {{\text{m}}^2}$
    负载侧转动惯量 JL $5.11{\text{ kg}} \cdot {{\text{m}}^2}$
    扭转刚度 K $5.05 \times {10^5}{\text{ N}} \cdot {\text{m/rad}}$
    电机转矩常数 Kt $4.1{\text{ N}} \cdot {\text{m/A}}$
    减速机传动比 N $121$
    电机转速 ωm 780 r/min
    下载: 导出CSV
  • [1] LUO S M, LIAO L X, WANG J, et al. Study on inspection and avoidance of interferences in five-axis end milling of cycloidal gears[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9-12): 3307-3314 doi: 10.1007/s00170-017-0002-1
    [2] WANG R Y, GAO F Q, LU M, et al. Meshing efficiency analysis of modified cycloidal gear used in the RV reducer[J]. Tribology Transactions, 2019, 62(3): 337-349 doi: 10.1080/10402004.2018.1549689
    [3] CHU X Y, XU H H, WU X M, et al. The method of selective assembly for the RV reducer based on genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2018, 232(6): 921-929 doi: 10.1177/0954406217700179
    [4] GU J J, HUANG D S, TAN J, et al. Manufacturing quality assurance for a rotate vector reducer with vibration technology[J]. Journal of Mechanical Science and Technology, 2019, 33(5): 1995-2001 doi: 10.1007/s12206-019-0401-3
    [5] TUNGPATARATANAWONG S, CHITBANCHONG S, MIYAZAKI T, et al. Robust position control of end-effector considering gear stiffness and arm stiffness for industrial robot[J]. IEEJ Transactions on Industry Applications, 2007, 127(6): 603-609 doi: 10.1541/ieejias.127.603
    [6] YOSHIOKA T, HIRANO Y, OHISHI K, et al. Vibration suppressing control method of angular transmission error of cycloid gear for industrial robots[C]//2014 International Power Electronics Conference. Hiroshima, Japan: IEEE, 2014: 1956-1961
    [7] KOSAKA Y, SHIMADA A, VIBOONCHAICHEEP P. Vibration control without estimated disturbance feedback for robot manipulators[C]//IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society. Roanoke, VA, USA: IEEE, 2003: 848-853
    [8] KUMAGAI S, MIYAZAKI T, OHISHI K. Motion control of industrial robot by considering vibration suppression and fast path tracking[J]. IEEJ Transactions on Industry Applications, 2010, 130(3): 375-384 doi: 10.1541/ieejias.130.375
    [9] KAMEL A, LANGE F, HIRZINGER G. New aspects of input shaping control to damp oscillations of a compliant force sensor[C]//IEEE International Conference on Robotics & Automation. Pasadena, CA, USA: IEEE, 2008: 2629-2635
    [10] YEON J S, PARK J H, SON S W, et al. Model-based iterative learning control for industrial robot manipulators[C]//IEEE International Conference on Automation and Logistics. Shenyang, China: IEEE, 2009: 24-28
    [11] MUNOZ-VAZQUEZ A, MARTINEZ-REYES F. Output feedback fractional integral sliding mode control of robotic manipulators[J]. Journal of Computational and Nonlinear Dynamics, 2019, 14(5): 054502 doi: 10.1115/1.4043000
    [12] GAMBHIRE S J, KANTH K S S, MALVATKAR G M, et al. Robust fast finite-time sliding mode control for industrial robot manipulators[J]. International Journal of Dynamics and Control, 2019, 7(2): 607-618 doi: 10.1007/s40435-018-0476-1
    [13] HENDZEL Z. Hamilton–Jacobi inequality robust neural network control of a mobile wheeled robot[J]. Mathematics and Mechanics of Solids, 2019, 24(3): 723-737 doi: 10.1177/1081286517754246
    [14] JIN X L, WANG Y, HUANG Z L. Approximately analytical technique for random response of LuGre friction system[J]. International Journal of Non-Linear Mechanics, 2018, 104: 1-7 doi: 10.1016/j.ijnonlinmec.2017.10.003
    [15] 刘占生, 张敏, 张广辉, 等. 基于LuGre摩擦模型的叶片碰撞摩擦特性研究[J]. 振动与冲击, 2012, 31(12): 172-178

    LIU Z S, ZHANG M, ZHANG G H, et al. Characteristics of impact-contact and friction between tips of blades based on LuGre model[J]. Journal of Vibration and Shock, 2012, 31(12): 172-178 (in Chinese)
    [16] DAHL P R. Measurement of solid friction parameters of ball bearings[C]//Proceedings of 6th Annual Symposium on Incremental Motion, Control Systems & Devices. Illinois: University of Illinois, 1977
    [17] 刘栋, 陶涛, 梅雪松, 等. 伺服系统线性特性和非线性摩擦的解耦辨识方法研究[J]. 仪器仪表学报, 2010, 31(4): 782-788

    LIU D, TAO T, MEI X S, et al. Study on the decoupling identification method of linear dynamic and nonlinear friction for servo drive system[J]. Chinese Journal of Scientific Instrument, 2010, 31(4): 782-788 (in Chinese)
    [18] 吴晓敏, 刘暾东, 贺苗, 等. 机器人关节摩擦建模与补偿研究[J]. 仪器仪表学报, 2018, 39(10): 44-50

    WU X M, LIU T D, HE M, et al. Research on friction modeling and compensation of robot manipulator[J]. Chinese Journal of Scientific Instrument, 2018, 39(10): 44-50 (in Chinese)
    [19] 吕明帅. RV减速器传动特性的仿真与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2016

    LYU M S. Simulation and experimental study of transmission characteristic of RV reducer[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese)
    [20] LI M Y, DENG M C. Operator-based external disturbance rejection of perturbed nonlinear systems by using robust right coprime factorization[J]. Transactions of the Institute of Measurement and Control, 2018, 40(10): 3169-3178 doi: 10.1177/0142331217718899
    [21] LIU Y, FU Y, HE W, et al. Modeling and observer-based vibration control of a flexible spacecraft with external disturbances[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8648-8658 doi: 10.1109/TIE.2018.2884172
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  28
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 录用日期:  2021-12-17
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回