留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船用螺旋桨铣削参数优化和刀轴矢量控制方法研究

张明德 沈智军 谢乐

张明德,沈智军,谢乐. 船用螺旋桨铣削参数优化和刀轴矢量控制方法研究[J]. 机械科学与技术,2022,41(4):580-586 doi: 10.13433/j.cnki.1003-8728.20200401
引用本文: 张明德,沈智军,谢乐. 船用螺旋桨铣削参数优化和刀轴矢量控制方法研究[J]. 机械科学与技术,2022,41(4):580-586 doi: 10.13433/j.cnki.1003-8728.20200401
ZHANG Mingde, SHEN Zhijun, XIE Le. Study on Parameter Optimization of Marine Propeller in Milling and Control Method of Tool Axis Vector[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 580-586. doi: 10.13433/j.cnki.1003-8728.20200401
Citation: ZHANG Mingde, SHEN Zhijun, XIE Le. Study on Parameter Optimization of Marine Propeller in Milling and Control Method of Tool Axis Vector[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 580-586. doi: 10.13433/j.cnki.1003-8728.20200401

船用螺旋桨铣削参数优化和刀轴矢量控制方法研究

doi: 10.13433/j.cnki.1003-8728.20200401
基金项目: 国家重点研发计划项目(2019YFB1703700)与重庆市高校创新研究群体项目(CXQT20022)
详细信息
    作者简介:

    张明德(1975−),教授,博士,研究方向为复杂曲面零件智能化与数字化制造,zmd@cqut.edu.cn

  • 中图分类号: TG156

Study on Parameter Optimization of Marine Propeller in Milling and Control Method of Tool Axis Vector

  • 摘要: 为提高螺旋桨桨叶全型面五轴铣削加工零件表面质量,通过目标矢量动态调整和优化工艺参数相结合的方式来实现。首先,通过定义特定的工装以及刀具,形成特定的加工纹路,且对螺旋桨的复杂区域进行可行域划分,得到桨毂等复杂区域的加工可行域。其次,建立干涉调整坐标系,对桨叶加工以及桨毂加工进行干涉调整,并得到各个轴的偏移补偿。然后,在此基础上建立了桨叶型面加工的铣削力学模型,并通过AdvantEdge FEM软件进行铣削力的仿真计算,得到最优铣削的加工参数。最后,进行螺旋桨桨叶型面的五轴铣削加工试验,对其结果进行检验与分析,并验证了该种加工方式的合理性。
  • 图  1  刀具与工装

    图  2  桨叶铣削纹路

    图  3  五轴铣床简图

    图  4  刀轴姿态在桨毂空间中的分布

    图  5  刀轴可行域分析

    图  6  刀轴在坐标系中的分布

    图  7  刀轴干涉调整

    图  8  刀轴矢量旋转

    图  9  桨毂加工进刀姿态调整

    图  10  A轴姿态调整

    图  11  铣削力仿真流程图

    图  12  铣削仿真模型

    图  13  铣削力仿真结果

    图  14  螺旋桨检测仪

    图  15  桨毂桨叶铣削加工结果

    图  16  第2次铣削桨叶型面余量偏差

    图  17  第3次铣削桨叶型面余量偏差

    表  1  铣削力仿真参数

    组号主轴转速
    nr/(r·min−1
    每齿进给量
    f/(mm·z−1
    切削深度
    ap/mm
    1 900 0.08 1.0
    2 900 0.10 1.0
    3 900 0.12 1.0
    4 1000 0.08 1.5
    5 1000 0.10 1.5
    6 1000 0.12 1.5
    下载: 导出CSV
  • [1] TAN G S, ZHANG L Y, LIU S L, et al. An unconstrained approach to blank localization with allowance assurance for machining complex parts[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(5-8): 647-658 doi: 10.1007/s00170-014-5798-3
    [2] REN Y Y, WANG R, ZHONG S S, et al. Kinematic calibration of hybrid machine tool for marine propellers processing[J]. Applied Mechanics and Materials, 2014, 602-605: 653-661 doi: 10.4028/www.scientific.net/AMM.602-605.653
    [3] 马帅. 大型船用螺旋桨铣磨复合加工方法研究[D]. 重庆: 重庆理工大学, 2019

    MA S. Research on milling-grinding compound machining method for large marine propeller[D]. Chongqing: Chongqing University of Technology, 2019 (in Chinese)
    [4] LIU J, HUANG L Y, WANG Y S, et al. Developing continuous machining strategy for cost-effective five-axis CNC milling systems with a four-axis controller[J]. International Journal of Computer Integrated Manufacturing, 2020, 33(5): 474-490 doi: 10.1080/0951192X.2020.1736719
    [5] YOUN J W, JUN Y, PARK S. Interference-free tool path generation in five-axis machining of a marine propeller[J]. International Journal of Production Research, 2003, 41(18): 4383-4402 doi: 10.1080/0020754031000153342
    [6] 温钊. 基于实测毛坯的螺旋桨加工余量及进给参数优化[D]. 重庆: 重庆理工大学, 2018

    WEN Z. Research on optimization of marching allowance and feedrate based on measured blanks[D]. Chongqing: Chongqing University of Technology, 2018 (in Chinese)
    [7] 张明德, 马帅, 谢乐, 等. 大型船用螺旋桨自适应加工方法研究[J]. 机械科学与技术, 2019, 38(11): 1752-1759

    ZHANG M D, MA S, XIE L, et al. Study on adaptive machining method for large marine propeller[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1752-1759 (in Chinese)
    [8] 王加林. 整体螺旋桨型面机器人砂带抛磨方法及软件开发[D]. 重庆: 重庆理工大学, 2016

    WANG J L. Robotic belt grinding method for the surface of whole propeller and development of software[D]. Chongqing: Chongqing University of Technology, 2016 (in Chinese)
    [9] WANG J, ZHANG D H, LUO M, et al. A GPU-based tool parameters optimization and tool orientation control method for four-axis milling with ball-end cutter[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8): 1107-1125 doi: 10.1007/s00170-018-2954-1
    [10] LI J L, YU W W, AN Q L, et al. A modeling and prediction method for plunge cutting force considering the small displacement of cutting layer[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2020, 234(11): 1369-1378 doi: 10.1177/0954405420921739
    [11] SHAN C W, ZHANG M H, YANG Y, et al. A dynamic cutting force model for transverse orthogonal cutting of unidirectional carbon/carbon composites considering fiber distribution[J]. Composite Structures, 2020, 251: 112668 doi: 10.1016/j.compstruct.2020.112668
    [12] 曾祥国, 盛鹰, 韩悌信, 等. 考虑热粘塑性钛合金动态本构关系及其实验验证[J]. 四川大学学报(工程科学版), 2014, 46(6): 152-157

    ZENG X G, SHENG Y, HAN T X, et al. Dynamic constitutive relation considering thermo viscoplasticity for titanium alloy and experimental verification[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(6): 152-157 (in Chinese)
    [13] 曾林林, 周利平, 张敬志. 基于AdvantEdge FEM的车刀参数优化试验研究[J]. 工具技术, 2015, 49(12): 49-52 doi: 10.3969/j.issn.1000-7008.2015.12.013

    ZENG L L, ZHOU L P, ZHANG J Z. Experimental study on optimization of turning tool parameters based on AdvantEdge FEM[J]. Tool Engineering, 2015, 49(12): 49-52 (in Chinese) doi: 10.3969/j.issn.1000-7008.2015.12.013
    [14] KIM G M, CHO P J, CHU C N. Cutting force prediction of sculptured surface ball-end milling using Z-map[J]. International Journal of Machine Tools and Manufacture, 2000, 40(2): 277-291 doi: 10.1016/S0890-6955(99)00040-1
    [15] 魏俊立. 基于铣削力建模的加工参数优化方法研究 [D]. 武汉: 华中科技大学, 2019

    WEI J L. Research on optimization method of milling parameters based on milling force modeling [D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese)
    [16] 刘鸿文. 材料力学(Ⅰ)[M]. 第五版. 北京 : 高等教育出版社 . 2014

    LIU H W. Mechanics of materials (I) [M]. 5th ed. Beijing : Higher Education Press, 2014 (in Chinese)
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  24
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 录用日期:  2021-12-17
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回