留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷3D打印微流挤出喷头的结构参数优化

王中良 段国林

王中良,段国林. 陶瓷3D打印微流挤出喷头的结构参数优化[J]. 机械科学与技术,2022,41(4):587-593 doi: 10.13433/j.cnki.1003-8728.20200395
引用本文: 王中良,段国林. 陶瓷3D打印微流挤出喷头的结构参数优化[J]. 机械科学与技术,2022,41(4):587-593 doi: 10.13433/j.cnki.1003-8728.20200395
WANG Zhongliang, DUAN Guolin. Structural Parameter Optimization of Micro-flow ExtrusionNozzle in Ceramic 3D Printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 587-593. doi: 10.13433/j.cnki.1003-8728.20200395
Citation: WANG Zhongliang, DUAN Guolin. Structural Parameter Optimization of Micro-flow ExtrusionNozzle in Ceramic 3D Printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 587-593. doi: 10.13433/j.cnki.1003-8728.20200395

陶瓷3D打印微流挤出喷头的结构参数优化

doi: 10.13433/j.cnki.1003-8728.20200395
基金项目: 河北省重点研发项目(17211808D)
详细信息
    作者简介:

    王中良(1996−),硕士研究生,研究方向为增材制造,625820740@qq.com

    通讯作者:

    段国林,教授,博士生导师,gldan@hebut.edu.cn

  • 中图分类号: TP23

Structural Parameter Optimization of Micro-flow ExtrusionNozzle in Ceramic 3D Printing

  • 摘要: 为了降低陶瓷3D打印机在打印过程中产生的挤出压力,在幂律模型的基础上推导出陶瓷浆料在挤出过程中产生的总压力与材料流变特性、挤出装置结构参数和挤出速度关系的数学模型。其中挤出喷头的结构参数是影响挤出压力的关键因素,在其它工艺参数相同的条件下,通过对数学模型进行计算可以确定实现最小压力的挤出喷头的结构参数组合。由试验验证可知,使用优化后的挤出喷头能有效地降低打印过程中产生的压力,并且能改善陶瓷零件的成形效果。
  • 图  1  3D打印机结构和挤出装置结构

    图  2  管道中浆料受力分析

    图  3  挤出头实物和物理模型

    图  4  浆料流动情况

    图  5  圆锥模口的几何尺寸及浆料受力分析

    图  6  陶瓷浆料的黏度与剪切速率的关系

    图  7  挤出头长度对挤出坯体的影响

    图  8  挤出头直径对挤出坯体的影响

    图  9  不同试验组打印过程中的压力变化

    图  10  不同试验组打印件的表面形貌

    表  1  计算结果

    参数数值参数数值
    最小压力Pmin /Pa 5566.4 过渡段直径D/mm 6
    料筒长度L0/mm 50 挤出头定形段直径d/mm 0.6
    过渡段长度L/mm 4 料筒锥角β/(o 40
    挤出头定形段长度l/mm 1 挤出头锥角α/(o 13
    料筒直径D0/mm 30
    下载: 导出CSV

    表  2  试验安排表

    试验组d/mml/mmD/mm
    a1 0.4 1 4
    a2 0.4 3 6
    a3 0.4 5 8
    b1 0.5 5 6
    b2 0.5 1 8
    b3 0.5 3 4
    c1 0.6 3 8
    c2 0.6 5 4
    c3 0.6 1 6
    下载: 导出CSV

    表  3  压力数据表

    试验实际压力/Pa理论压力/Pa
    a1 13073 12018
    a2 18398 18159
    a3 43971 44388
    b1 38528 37491
    b2 8221 7818
    b3 17312 17747
    c1 12904 12156
    c2 17250 18644
    c3 5804 5566
    下载: 导出CSV
  • [1] 张文毓. 3D打印陶瓷材料的研究与应用[J]. 陶瓷, 2020(6): 40-44 doi: 10.3969/j.issn.1002-2872.2020.06.007

    ZHANG W Y. Research and application of 3D printing ceramic materials[J]. Ceramics, 2020(6): 40-44 (in Chinese) doi: 10.3969/j.issn.1002-2872.2020.06.007
    [2] 陆春, 徐艳荣, 戚丁文, 等. 3D打印氧化硅陶瓷的制备及性能研究[J]. 硅酸盐通报, 2018, 37(3): 939-943

    LU C, XU Y R, QI D W, et al. Preparation and properties of 3D printing silica ceramics[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 939-943 (in Chinese)
    [3] 杨孟孟, 罗旭东, 谢志鹏. 陶瓷3D打印技术综述[J]. 人工晶体学报, 2017, 46(1): 183-186,191 doi: 10.3969/j.issn.1000-985X.2017.01.033

    YANG M M, LUO X D, XIE Z P. Review of 3D printing technology of ceramic[J]. Journal of Synthetic Crystals, 2017, 46(1): 183-186,191 (in Chinese) doi: 10.3969/j.issn.1000-985X.2017.01.033
    [4] 吕宁, 赵欣, 郑健, 等. 陶瓷浆料DIW精密挤出装置关键参数的优化研究[J]. 陶瓷学报, 2019, 40(4): 517-523

    LYU N, ZHAO X, ZHENG J, et al. Key parameters optimization of ceramic slurry DIW precision extrusion device[J]. Journal of Ceramics, 2019, 40(4): 517-523 (in Chinese)
    [5] 焦守政, 齐文, 陈松, 等. 分散剂及粉体粒径对光固化氧化铝陶瓷浆料粘度及制件性能的影响[J]. 硅酸盐通报, 2020, 39(1): 260-265

    JIAO S Z, QI W, CHEN S, et al. Effect of dispersant and powder particle size on viscosity and samples properties of photocured alumina ceramic slurries[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(1): 260-265 (in Chinese)
    [6] 孙文彬, 周婧, 段国林. 微流挤出成形3D打印氧化锆陶瓷浆料的制备及性能[J]. 硅酸盐学报, 2020, 48(3): 399-407

    SUN W B, ZHOU J, DUAN G L. Preparation and performance of zirconia ceramic slurry based on 3D printing process of micro-flow extrusion forming[J]. Journal of the Chinese Ceramic Society, 2020, 48(3): 399-407 (in Chinese)
    [7] 闫存富, 李淑娟, 杨磊鹏, 等. 陶瓷零件低温挤压自由成形工艺挤压过程及液相迁移[J]. 中国机械工程, 2016, 27(16): 2242-2248 doi: 10.3969/j.issn.1004-132X.2016.16.020

    YAN C F, LI S J, YANG L P, et al. Liquid phase migration and freeze-form extrusion fabrication of aqueous ceramic paste[J]. China Mechanical Engineering, 2016, 27(16): 2242-2248 (in Chinese) doi: 10.3969/j.issn.1004-132X.2016.16.020
    [8] 刘骥远, 吴懋亮, 蔡杰, 等. 工艺参数对3D打印陶瓷零件质量的影响[J]. 上海电力学院学报, 2015, 31(4): 376-380

    LIU J Y, WU M L, CAI J, et al. Influence of operating parameters on 3D printing ceramic parts[J]. Journal of Shanghai University of Electric Power, 2015, 31(4): 376-380 (in Chinese)
    [9] 何明腾, 李国富, 黄晓珍, 等. 陶瓷泥料挤出成型工具几何参数的优化研究[J]. 兵器材料科学与工程, 2014, 37(5): 51-54 doi: 10.3969/j.issn.1004-244X.2014.05.015

    HE M T, LI G F, HUANG X Z, et al. Optimization on geometric parameters of extrusion molding tool for ceramic mud[J]. Ordnance Material Science and Engineering, 2014, 37(5): 51-54 (in Chinese) doi: 10.3969/j.issn.1004-244X.2014.05.015
    [10] 周婧, 段国林, 卢林, 等. 陶瓷浆料微流挤压成形关键问题研究[J]. 中国机械工程, 2015, 26(22): 3097-3102 doi: 10.3969/j.issn.1004-132X.2015.22.018

    ZHOU J, DUAN G L, LU L, et al. Research on several key problems of microflow extrusion forming of ceramic slurry[J]. China Mechanical Engineering, 2015, 26(22): 3097-3102 (in Chinese) doi: 10.3969/j.issn.1004-132X.2015.22.018
    [11] ZHU S C, STIEGER M A, VAN DER GOOT A J. Extrusion-based 3D printing of food pastes: correlating rheological properties with printing behaviour[J]. Innovative Food Science & Emerging Technologies, 2019, 58: 102214
    [12] FAKHRUDDIN K, HAMZAH M S A, RAZAK S I A. Effects of extrusion pressure and printing speed of 3D bioprinted construct on the fibroblast cells viability[J]. IOP Conference Series:Materials Science and Engineering, 2018, 440: 012042 doi: 10.1088/1757-899X/440/1/012042
    [13] LI Y Y, BRIDGWATER J. Prediction of extrusion pressure using an artificial neural network[J]. Powder Technology, 2000, 108(1): 65-73 doi: 10.1016/S0032-5910(99)00254-5
    [14] 刘洪军, 刘佳, 郑华滨, 等. 工艺参数对固体自由成型工艺中陶瓷膏体挤出过程的影响[J]. 制造技术与机床, 2013(3): 83-88 doi: 10.3969/j.issn.1005-2402.2013.03.030

    LIU H J, LIU J, ZHENG H B, et al. Effect of parameters on extrusion process of ceramic paste in solid freeform fabrication[J]. Manufacturing Technology & Machine Tool, 2013(3): 83-88 (in Chinese) doi: 10.3969/j.issn.1005-2402.2013.03.030
    [15] MOSTAFAEI A, ELLIOTT A M, BARNES J E, et al. Binder jet 3D printing – process parameters, materials, properties, modeling, and challenges[J]. Progress in Materials Science, 2021, 119: 100707 doi: 10.1016/j.pmatsci.2020.100707
    [16] 刘志鹏, 王安邦, 段国林. 挤出成形3D打印机扫描速度与挤出速度实时匹配的研究[J]. 机械科学与技术, 2020, 39(7): 1005-1013

    LIU Z P, WANG A B, DUAN G L. Research of real-time matching between scanning speed and extrusion speed for extrusion forming of 3D printer[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(7): 1005-1013 (in Chinese)
    [17] 戈权珍, 段国林, 孟雯杰. 微流挤出工艺的分层算法研究[J]. 机械科学与技术, 2019, 38(8): 1244-1249

    GE Q Z, DUAN G L, MENG W J. Study on layering algorithm of micro-fluid extrusion process[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1244-1249 (in Chinese)
    [18] 王斌. 陶瓷注射成形工艺及流变特性研究 [D]. 武汉: 华中科技大学, 2005

    WANG B. Research on ceramic injection molding and rheological [D]. Wuhan: Huazhong University of Science and Technology, 2005 (in Chinese)
    [19] 伍勇华, 党梓轩, 祝婷, 等. 基于扩展度动态测量的水泥浆体流变参数表征[J]. 硅酸盐通报, 2020, 39(9): 2732-2738,2744

    WU Y H, DANG Z X, ZHU T, et al. Characterization of rheological parameters of cement paste based on dynamic measurement of slump flow[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2732-2738,2744 (in Chinese)
    [20] 汪传生, 张伟, 江瑞, 等. 基于螺杆挤出式工业陶瓷3D打印技术的最佳成型工艺研究[J]. 中国塑料, 2019, 33(11): 64-70

    WANG C S, ZHANG W, JIANG R, et al. Study on the optimum forming technology of 3D printing technology for industrial ceramics based on screw extrusion[J]. China Plastics, 2019, 33(11): 64-70 (in Chinese)
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  24
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-08
  • 录用日期:  2021-12-17
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回