留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生轻质高强韧夹芯结构设计及其韧性性能分析

马玉秋 郭策 陈光明 戴宁 管吉钢 何湘鹏

马玉秋, 郭策, 陈光明, 戴宁, 管吉钢, 何湘鹏. 仿生轻质高强韧夹芯结构设计及其韧性性能分析[J]. 机械科学与技术, 2022, 41(5): 801-807. doi: 10.13433/j.cnki.1003-8728.20200392
引用本文: 马玉秋, 郭策, 陈光明, 戴宁, 管吉钢, 何湘鹏. 仿生轻质高强韧夹芯结构设计及其韧性性能分析[J]. 机械科学与技术, 2022, 41(5): 801-807. doi: 10.13433/j.cnki.1003-8728.20200392
MA Yuqiu, GUO Ce, CHEN Guangming, DAI Ning, GUAN Jigang, HE Xiangpeng. Design and Toughness Analysis of Bionic Lightweight Sandwich Structure with High Strength and Toughness[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(5): 801-807. doi: 10.13433/j.cnki.1003-8728.20200392
Citation: MA Yuqiu, GUO Ce, CHEN Guangming, DAI Ning, GUAN Jigang, HE Xiangpeng. Design and Toughness Analysis of Bionic Lightweight Sandwich Structure with High Strength and Toughness[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(5): 801-807. doi: 10.13433/j.cnki.1003-8728.20200392

仿生轻质高强韧夹芯结构设计及其韧性性能分析

doi: 10.13433/j.cnki.1003-8728.20200392
基金项目: 

国家自然科学基金项目 51875282

详细信息
    作者简介:

    马玉秋(1997-), 硕士研究生, 研究方向为轻质多功能仿生结构与材料, yuqiu_ma@163.com

    通讯作者:

    郭策, 教授, 博士生导师, guozc@nuaa.edu.cn

  • 中图分类号: TG156

Design and Toughness Analysis of Bionic Lightweight Sandwich Structure with High Strength and Toughness

  • 摘要: 复合材料轻质夹芯结构因其优异的力学性能被广泛应用于航空航天领域。本文在对白星花金龟鞘翅断面形貌观测的基础上, 根据鞘翅表皮层中纤维铺排方式以及微观结构特征设计了仿鞘翅轻质高韧夹芯结构。并利用有限元法对复合材料双螺旋铺层面板以及仿生鞘翅夹芯结构进行三点弯曲力学性能分析, 对结构韧性进行分析和评价; 进一步对夹芯结构进行承压性能分析。结果表明与传统蜂窝夹芯结构相比, 所设计的仿鞘翅复合材料夹芯结构具有更优异的韧性, 且与蜂窝夹芯结构承压能力相当。该研究对新型轻质高强高韧复合材料结构设计具有一定的参考和指导意义。
  • 图  1  白星花金龟鞘翅断面微观结构图

    图  2  两种层合板的有限元模型

    图  3  层合板有限元模型

    图  4  层合板三点弯曲位移-载荷曲线

    图  5  仿生夹芯结构的有限元模型

    图  6  3种夹芯结构三点弯曲应力云图

    图  7  3种夹芯结构位移-载荷曲线

    图  8  3种夹芯结构韧性分析数据

    图  9  3种结构模型及其位移-载荷曲线

    图  10  3种夹芯结构压缩力学性能对比

    表  1  单层碳纤维板材料参数及力学性能

    ρ/(kg·m-3) E1=E2/MPa E3/MPa G12/MPa G13=G23/MPa v/MPa XT/MPa XC/MPa YT/MPa YC/MPa S12/MPa S23=S13/MPa
    1.5 10 500 8 000 4 320 3 230 0.3 314 314 61 180 73 73
    下载: 导出CSV

    表  2  Cohesive界面层属性参数[23]

    ρ/(kg·m-3) τn(s)/MPa τs(s)/MPa τt(s)/MPa Kn(s)/MPa Ks(s)/MPa Kt(s)/MPa GC/(N·mm-1) GC/(N·mm-1) GC/(N·mm-1)
    1.3 11 17 17 850 850 314 0.3 0.8 0.8
    下载: 导出CSV

    表  3  两种层合板力学性能对比

    类型 韧性/J
    双螺旋 4.12
    经纬交织(0~90°) 2.60
    下载: 导出CSV

    表  4  TC4力学性能

    ρ/(kg·m-3) E/MPa v σs/MPa
    1.3 118 000 0.3 862
    下载: 导出CSV
  • [1] SUN J Y, LIU C, DU H Y, et al. Design of a bionic aviation material based on the microstructure of beetle's elytra[J]. International Journal of Heat & Mass Transfer, 2017, 114: 62-72
    [2] CAI Z B, LI Z Y, DING Y, et al. Preparation and impact resistance performance of bionic sandwich structure inspired from beetle forewing[J]. Composites Part B: Engineering, 2019, 161: 490-501 doi: 10.1016/j.compositesb.2018.12.139
    [3] SUN J Y, BHUSHAN B. Structure and mechanical properties of beetle wings: a review[J]. RSC Advances, 2012, 2(33): 12606-12623 doi: 10.1039/c2ra21276e
    [4] ZAHERI A, FENNER J S, RUSSELL B P, et al. Revealing the mechanics of helicoidal composites through additive manufacturing and beetle developmental stage analysis[J]. Advanced Functional Materials, 2018, 28(33): 1803073 doi: 10.1002/adfm.201803073
    [5] GORB S N. Walking on the ceiling: structures, functional principles, and ecological implications[J]. Arthropod Structure & Development, 2004, 33(1): 1-2
    [6] 任露泉, 李建桥, 陈秉聪. 非光滑表面的仿生降阻研究[J]. 科学通报, 1995, 40(19): 1812-1814 doi: 10.3321/j.issn:0023-074X.1995.19.023

    REN L Q, LI J Q, CHEN B C. Study on bionic reducing resistance on non-smooth surface[J]. Chinese Science Bulletin, 1995, 40(19): 1812-1814 (in Chinese) doi: 10.3321/j.issn:0023-074X.1995.19.023
    [7] 杨志贤, 戴振东, 郭策. 东方龙虱鞘翅: 形态学及力学性能研究[J]. 科学通报, 2009, 54(12): 1767-1772 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200912023.htm

    YANG Z X, DAI Z D, GUO C. Morphology and mechanical properties of Cybister elytra[J]. Chinese Science Bulletin, 2010, 55(8): 771-776 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200912023.htm
    [8] 郭策, 陆振玉, 吴元琦. 仿生轻质结构在飞机大开口区的应用及其优化设计[J]. 机械工程学报, 2017, 53(13): 125-135 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201713015.htm

    GUO C, LU Z Y, WU Y Q. The application of biomimetic lightweight sandwich panel to the aircraft structure with large cutout and its optimum design[J]. Journal of Mechanical Engineering, 2017, 53(13): 125-135 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201713015.htm
    [9] 周怡, 郭策, 朱春生, 等. 具有层状纤维缠绕的仿甲虫鞘翅轻质结构的设计及其力学性能分析[J]. 中国机械工程, 2011, 22(16): 1969-1973 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201116017.htm

    ZHOU Y, GUO C, SHU C S, et al. Study on design and mechanics properties of beetle's elytra-inspired lightweight structures with filament winding[J]. China Mechanical Engineering, 2011, 22(16): 1969-1973 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201116017.htm
    [10] KUNDANATI L, SIGNETTI S, GUPTA H S, et al. Multilayer stag beetle elytra perform better under external loading via non-symmetric bending properties[J]. Journal of the Royal Society Interface, 2018, 15(144): 20180427 doi: 10.1098/rsif.2018.0427
    [11] CHENG L, THOMAS A, GLANCEY J L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 211-220 doi: 10.1016/j.compositesa.2010.11.009
    [12] 陈斌, 彭向和, 范镜泓. 生物自然复合材料的结构特征及仿生复合材料的研究[J]. 复合材料学报, 2000, 17(3): 59-62 doi: 10.3321/j.issn:1000-3851.2000.03.014

    CHEN B, PENG X H, FAN J H. Microstructure of natural biocomposites and research of biomimetic composites[J]. Acta Materiae Compositae Sinica, 2000, 17(3): 59-62 (in Chinese) doi: 10.3321/j.issn:1000-3851.2000.03.014
    [13] 杨志贤, 王卫英, 虞庆庆, 等. 四种甲虫鞘翅的力学参数测定及微结构观测[J]. 复合材料学报, 2007, 24(2): 92-98 doi: 10.3321/j.issn:1000-3851.2007.02.017

    YANG Z X, WANG W Y, YU Q Q, et al. Measurements on mechanical parameters and studies on microstructure of elytra in beetles[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 92-98 (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.02.017
    [14] YU X D, PAN L C, CHEN J X, et al. Experimental and numerical study on the energy absorption abilities of trabecular-honeycomb biomimetic structures inspired by beetle elytra[J]. Journal of Materials Science, 2018, 54(3): 2193-2204
    [15] GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomaterialia, 2014, 10(9): 3997-4008 doi: 10.1016/j.actbio.2014.03.022
    [16] RITCHIE R O. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817-822 doi: 10.1038/nmat3115
    [17] MENG L, LIANG H L, YU H C, et al. The energy absorption and bearing capacity of light-weight bio-inspired structures produced by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93: 170-182 doi: 10.1016/j.jmbbm.2019.02.016
    [18] CHANG Y, CHEN P Y. Hierarchical structure and mechanical properties of snake (Naja atra) and turtle (Ocadia sinensis) eggshells[J]. Acta Biomaterialia, 2016, 31: 33-49 doi: 10.1016/j.actbio.2015.11.040
    [19] APICHATTRABRUT T, RAVI-CHANDAR K. Helicoidal composites[J]. Mechanics of Advanced Materials and Structures, 2006, 13(1): 61-76 doi: 10.1080/15376490500343808
    [20] MENEZES-SOBRINHO I L. Fracture toughness in fibrous materials[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(1 Pt 1): 011502
    [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 1449-2005纤维增强塑料弯曲性能试验方法[S]. 北京: 中国标准出版社, 2005

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Commission. GB/T 1449-2005 Fibre-reinforced plastic composites-determination of flexural properties[S]. Beijing: China Standards Press, 2005 (in Chinese)
    [22] CHAO X J, QI L H, TIAN W L, et al. Evaluation for interfacial fracture of fiber-reinforced pyrocarbon matrix composites by using a zero-thickness cohesive approach[J]. Journal of Alloys and Compounds, 2020, 820: 153378 doi: 10.1016/j.jallcom.2019.153378
    [23] 蒋振, 文鹤鸣. 粘结单元在模拟FRP层合板低速冲击响应中的应用[J]. 爆炸与冲击, 2019, 39(4): 043202, doi: 10.11883/bzycj-2017-0245

    JIANG Z, WEN H M. Application of cohesive elements in modeling the low-velocity impact response and failure of fiber reinforced plastic laminates[J]. Explosion And Shock Waves, 2019, 39(4): 043202, doi: 10.11883/bzycj-2017-0245(inChinese)
    [24] 杨志贤, 于娜, 刘泽华. 非贯通球形空腔型轻质仿生结构的设计及其力学性能[J]. 复合材料学报, 2015(3): 848-855 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201503030.htm

    YANG Z X, YU N, LIU Z H. Design and mechanical properties of lightweight bionic structures with non-connected spherical lumens[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 848-855 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201503030.htm
    [25] 中华人民共和国国家质量监督检验检验总局, 中国国家标准化管理委员会. GB/T 1456-2005夹层结构弯曲性能试验方法[S]. 北京: 中国标准出版社, 2005

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Commission. GB/T 1456-2005 Test method for flexural properties of sandwich constructions[S]. Beijing: China Standards Press, 2005 (in Chinese)
    [26] 高健, 刘立彬, 贺韡, 等. 航空钛合金零件激光选区熔化3D打印技术应用的关键基础研究[J]. 航空制造技术, 2018, 61(23): 87-90, 95 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ2018Z2014.htm

    GAO J, LIU L B, HE W, et al. Research on key application problems of selective laser melting 3D printing technology in aeronautical titanium alloy parts[J]. Aeronautical Manufacturing Technology, 2018, 61(23): 87-90, 95 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ2018Z2014.htm
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  98
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-15
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回