留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拟间歇振动辅助偏摆车削的切削力研究

卢明明 庄绪龙 陈斌 周家康 林洁琼

卢明明, 庄绪龙, 陈斌, 周家康, 林洁琼. 拟间歇振动辅助偏摆车削的切削力研究[J]. 机械科学与技术, 2022, 41(6): 891-897. doi: 10.13433/j.cnki.1003-8728.20200382
引用本文: 卢明明, 庄绪龙, 陈斌, 周家康, 林洁琼. 拟间歇振动辅助偏摆车削的切削力研究[J]. 机械科学与技术, 2022, 41(6): 891-897. doi: 10.13433/j.cnki.1003-8728.20200382
LU Mingming, ZHUANG Xulong, CHEN Bin, ZHOU Jiakang, LIN Jieqiong. Study on Cutting Force Modeling for Quasi Intermittent Vibration Assisted Swing Cutting[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(6): 891-897. doi: 10.13433/j.cnki.1003-8728.20200382
Citation: LU Mingming, ZHUANG Xulong, CHEN Bin, ZHOU Jiakang, LIN Jieqiong. Study on Cutting Force Modeling for Quasi Intermittent Vibration Assisted Swing Cutting[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(6): 891-897. doi: 10.13433/j.cnki.1003-8728.20200382

拟间歇振动辅助偏摆车削的切削力研究

doi: 10.13433/j.cnki.1003-8728.20200382
基金项目: 

国家自然科学基金项目 51905046

吉林省科技发展计划项目 20180101034JC

吉林省微纳与超精密制造重点实验室资助项目 20140622008JC

详细信息
    作者简介:

    卢明明(1985-), 教授, 博士生导师, 研究方向为精密加工与检测技术, lumm@ccut.edu.cn

    通讯作者:

    林洁琼, 教授, 博士生导师, linjieqiong@ccut.edu.cn

  • 中图分类号: TH161;TH69

Study on Cutting Force Modeling for Quasi Intermittent Vibration Assisted Swing Cutting

  • 摘要: 拟间歇振动辅助偏摆车削主要是为了提高难加工材料切削加工性而提出, 本文针对拟间歇振动辅助偏摆切削过程中切削力建模展开研究。首先, 根据薄剪切面理论分析振动辅助偏摆切削过程中瞬时剪切角和切削速度变化关系, 讨论切削力在法平面、前刀面及剪切面的变化情况。其次, 根据最大剪应力理论与切削过程中力的关系, 分析各相关角度与时间t的联系, 建立切削力解析模型。最后, 通过切削实验分析研究主轴转速和切削深度对切削力的影响。结果表明: 当主轴转速由10 r/min增加到30 r/min时, 实验和理论获得切削力值分别增加3.7 N和4 N; 切削深度由0.01 mm增加到0.03 mm时, 实验和理论获得的切削力值分别增加3.6 N和4.2 N。实验结果与理论模型分析结果变化趋势基本一致, 验证了所提出模型的有效性。
  • 图  1  振动辅助偏摆切削装置

    图  2  振动辅助偏摆切削端面示意图

    图  3  振动辅助偏摆切削的瞬时几何关系图

    图  4  振动辅助偏摆切削过程的速度分析

    图  5  合力R与法向力Fn、摩擦力f的几何关系

    图  6  初始切削阶段与摩擦反转后的切削阶段合力投影图

    图  7  振动辅助偏摆切削实验

    图  8  不同主轴转速对应的切削力

    图  9  不同切削速度下切削力的实验与理论对比图

    图  10  不同切削深度对应的切削力

    图  11  不同切深下切削力的实验与理论对比图

    表  1  不同转速下的切削参数

    切削参数 实验类型
    1 2 3
    振动频率/Hz 10 10 10
    振幅/μm 10 10 10
    主轴速度/(r·min-1) 10 20 30
    切深/mm 0.03 0.03 0.03
    下载: 导出CSV

    表  2  不同切深下的切削参数

    切削参数 实验类型
    1 2 3
    振动频率/Hz 10 10 10
    振幅/μm 10 10 10
    主轴速度/(r·min-1) 21 21 21
    切深/mm 0.01 0.02 0.03
    下载: 导出CSV
  • [1] RAYAT M S, GILL S S, SINGH R, et al. Fabrication and machining of ceramic composites-A review on current scenario[J]. Materials and Manufacturing Processes, 2017, 32(13): 1451-1474 doi: 10.1080/10426914.2017.1279301
    [2] GREITEMEIER D, PALM F, SYASSEN F, et al. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting[J]. International Journal of Fatigue, 2017, 94: 211-217 doi: 10.1016/j.ijfatigue.2016.05.001
    [3] TUCHO W M, CUVILLIER P, SJOLYST-KVERNELAND A, et al. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment[J]. Materials Science and Engineering: A, 2017, 689: 220-232 doi: 10.1016/j.msea.2017.02.062
    [4] PALMERT F, MOVERARE J, GUSTAFSSON D, et al. Fatigue crack growth behaviour of an alternative single crystal nickel base superalloy[J]. International Journal of Fatigue, 2018, 109: 166-181 doi: 10.1016/j.ijfatigue.2017.12.003
    [5] BEHJAT T, RUSSLY A R, LUQMAN C A, et al. Effect of PEG on the biodegradability studies of Kenaf cellulose-polyethylene composites[J]. International Food Research Journal, 2020, 16(2): 243-247
    [6] JIAO F, LI F B, DUAN P. Research on cutting force characteristics of laser and ultrasonic assisted cutting of sintered tungsten carbide with FEA method[J]. Materials Science Forum, 2013, 770: 272-275 doi: 10.4028/www.scientific.net/MSF.770.272
    [7] 王涛, 王盛, 张立峰. CFRP高速铣削渐进损伤切削力模型研究[J]. 机械科学与技术, 2020, 39(5): 736-742 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202005014.htm

    WANG T, WANG S, ZHANG L F. Research of cutting force model for progressive damage in high speed milling of CFRP[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 736-742 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202005014.htm
    [8] 张晨峰, 李国, 王波. 低频椭圆振动切削加工仿真分析[J]. 航空精密制造技术, 2012, 48(6): 13-17 doi: 10.3969/j.issn.1003-5451.2012.06.004

    ZHANG C F, LI G, WANG B. Simulation analysis of low frequency elliptical vibration cutting[J]. Aviation Precision Manufacturing Technology, 2012, 48(6): 13-17 (in Chinese) doi: 10.3969/j.issn.1003-5451.2012.06.004
    [9] SHAMOTO E, MORIWAKI T. Study on elliptical vibration cutting[J]. CIRP Annals, 1994, 43(1): 35-38 doi: 10.1016/S0007-8506(07)62158-1
    [10] ZHANG X Q, KUMAR A S, RAHMAN M, et al. An analytical force model for orthogonal elliptical vibration cutting technique[J]. Journal of Manufacturing Processes, 2012, 14(3): 378-387 doi: 10.1016/j.jmapro.2012.05.006
    [11] KIM G D, LOH B G. Cutting force variation with respect to tilt angle of trajectory in elliptical vibration V-grooving[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(10): 1861-1864 doi: 10.1007/s12541-013-0249-x
    [12] AMMOURI A H, HAMADE R F. BUEVA: a bi-directional ultrasonic elliptical vibration actuator for micromachining[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(9-12): 991-1001 doi: 10.1007/s00170-011-3463-7
    [13] WENG J, ZHUANG K J, CHEN D, et al. An analytical force prediction model for turning operation by round insert considering edge effect[J]. International Journal of Mechanical Sciences, 2017, 128-129: 168-180 doi: 10.1016/j.ijmecsci.2017.04.018
    [14] RAZAVI H, NATEGH M J, ABDULLAH A. Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning, part II: dynamics analysis[J]. International Journal of Mechanical Sciences, 2012, 63(1): 12-25 doi: 10.1016/j.ijmecsci.2012.05.005
    [15] 赵东坡. 并联驱动振动辅助偏摆车削装置及关键技术研究[D]. 长春: 长春工业大学, 2019

    ZHAO D P. Research on parallel drive vibration assisted swing turning device and its key technologies[D]. Changchun: Changchun University of Technology, 2019 (in Chinese)
    [16] LU M M, ZHAO D P, LIN J Q, et al. Design and analysis of a novel piezoelectrically actuated vibration assisted rotation cutting system[J]. Smart Materials and Structures, 2018, 27(9): 095020 doi: 10.1088/1361-665X/aad5ae
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  46
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回