留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多无人船编队控制及其位置估计算法研究

邓志良 王振凎 沈薇 刘云平

邓志良,王振凎,沈薇, 等. 多无人船编队控制及其位置估计算法研究[J]. 机械科学与技术,2022,41(4):626-633 doi: 10.13433/j.cnki.1003-8728.20200379
引用本文: 邓志良,王振凎,沈薇, 等. 多无人船编队控制及其位置估计算法研究[J]. 机械科学与技术,2022,41(4):626-633 doi: 10.13433/j.cnki.1003-8728.20200379
DENG Zhiliang, WANG Zhen'gan, SHEN Wei, LIU Yunping. Formation Control of Unmanned Surface Vehicleswith Position Estimation Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 626-633. doi: 10.13433/j.cnki.1003-8728.20200379
Citation: DENG Zhiliang, WANG Zhen'gan, SHEN Wei, LIU Yunping. Formation Control of Unmanned Surface Vehicleswith Position Estimation Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 626-633. doi: 10.13433/j.cnki.1003-8728.20200379

多无人船编队控制及其位置估计算法研究

doi: 10.13433/j.cnki.1003-8728.20200379
基金项目: 国家重点研发计划重点专项课题(2018YFC1405703)
详细信息
    作者简介:

    邓志良(1962−),教授,博士生导师,博士,研究方向为智能控制系统,mtsdzl@163.com

  • 中图分类号: U664.8

Formation Control of Unmanned Surface Vehicleswith Position Estimation Algorithm

  • 摘要: 针对因定位精度导致多无人船编队队形不稳定的问题,提出一种结合扩展卡尔曼滤波的领航-跟随编队控制策略,以提高定位精度形成稳定的编队队形。建立无人船系统数学模型,分析基于领航-跟随法的多无人船编队的数学模型;根据领航-跟随法设计编队控制律,并结合李雅普诺夫函数证明系统稳定性,针对编队中所需的位置信息,利用扩展卡尔曼滤波(EKF)融合GPS与IMU两部分数据,提高定位精度;进行多无人船编队以及队形变换等仿真实验,并对引入EKF后的实验数据进行分析。结果表明,编队控制器及位置估计算法可有效控制跟随无人船形成稳定的编队队形,且变换队形后,可迅速且稳定地完成队形重构。
  • 图  1  单船运动模型

    图  2  无人船领航-跟随编队模型

    图  3  跟随无人船偏航角仿真图

    图  4  期望相对位置仿真

    图  5  跟随无人船速度仿真

    图  6  多无人船编队队形仿真

    图  7  变换队形仿真

    图  8  GPS位置误差

    图  9  位置估计后的位置误差

    图  10  引入EKF后的编队航行轨迹

    图  11  跟随无人船航速及偏航角偏差

    图  12  位置数据分析

    图  13  变换队形阶段位置曲线

    表  1  误差参数

    误差项数值
    加速度计零偏 10−4 g
    加速度计安装误差 5 °/s
    加速度计白噪声 10−5 g
    陀螺仪零偏 0.03 °/h
    陀螺仪安装误差 1 °/s
    陀螺仪白噪声 0.01 °/h
    下载: 导出CSV
  • [1] 李峰, 易宏. 无人水面艇在水上交通安全监管中的应用[J]. 中国舰船研究, 2018, 13(6): 27-33

    LI F, YI H. Application of USV to maritime safety supervision[J]. Chinese Journal of Ship Research, 2018, 13(6): 27-33 (in Chinese)
    [2] DONG C, LI X, CHEN X X, et al. Recent progress of marine survey unmanned surface vehicle in China[J]. Marine Technology Society Journal, 2019, 53(3): 23-29 doi: 10.4031/MTSJ.53.3.4
    [3] 刘欣, 杨格, 郭日成. 无人艇在电子战中的应用[J]. 科技导报, 2019, 37(4): 20-25

    LIU X, YANG G, GUO R C. Application of unmanned surface vehicle in electronic warfare[J]. Science & Technology Review, 2019, 37(4): 20-25 (in Chinese)
    [4] GHOMMAM J, SAAD M. Adaptive leader-follower formation control of underactuated surface vessels under asymmetric range and bearing constraints[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 852-865 doi: 10.1109/TVT.2017.2760367
    [5] 王涛, 许永生, 张迎春, 等. 基于行为的非合作目标多航天器编队轨迹规划[J]. 中国空间科学技术, 2017, 37(1): 19-25

    WANG T, XU Y S, ZHANG Y C, et al. Trajectory planning for non-cooperative target multi-spacecraft formation based on behavior strategy[J]. Chinese Space Science and Technology, 2017, 37(1): 19-25 (in Chinese)
    [6] 刘安东, 秦冬冬. 基于虚拟结构法的多移动机器人分布式预测控制[J]. 控制与决策, 2021, 36(5): 1273-1280

    LIU A D, QIN D D. Distributed predictive control of multiple mobile robots based on virtual structure method[J]. Control and Decision, 2021, 36(5): 1273-1280 (in Chinese)
    [7] CHI T, ZHANG C J, SONG Y, et al. A strategy of multi-robot formation and obstacle avoidance in unknown environment[C]//Proceedings of 2016 IEEE International Conference on Information and Automation (ICIA). Ningbo, China: IEEE, 2016: 1455-1460
    [8] SIAVASH M, MAJD V J, TAHMASEBI M. A practical finite-time back-stepping sliding-mode formation controller design for stochastic nonlinear multi-agent systems with time-varying weighted topology[J]. International Journal of Systems Science, 2020, 51(3): 488-506 doi: 10.1080/00207721.2020.1716105
    [9] WEI W. A new formation control strategy based on the virtual-leader-follower and artificial potential field[C]//Proceedings of the 34rd Youth Academic Annual Conference of Chinese Association of Automation. Jinzhou, China: IEEE, 2019: 485-492
    [10] WU X R, WANG S S, XING M Y. Observer-based leader-following formation control for multi-robot with obstacle avoidance[J]. IEEE Access, 2018, 7: 14791-14798
    [11] WANG J Q, WANG C, WEI Y J, et al. Sliding mode based neural adaptive formation control of underactuated AUVs with leader-follower strategy[J]. Applied Ocean Research, 2020, 94: 101971 doi: 10.1016/j.apor.2019.101971
    [12] OH K K, AHN H S. Distributed formation control based on orientation alignment and position estimation[J]. International Journal of Control, Automation and Systems, 2018, 16(3): 1112-1119 doi: 10.1007/s12555-017-0280-2
    [13] OGAWA T, SAKURAMA K, NAKATANI S, et al. Relative position estimation of detected robots for formation control[J]. Transactions of the Society of Instrument and Control Engineers, 2019, 55(3): 181-188 doi: 10.9746/sicetr.55.181
    [14] 王念曾, 李荣冰, 韩志凤, 等. 基于惯性/GNSS/UWB的小型无人机相对导航算法研究[J]. 电子测量技术, 2019, 42(16): 94-100

    WANG N Z, LI R B, HAN Z F, et al. Research on relative navigation algorithm of small UAV based on inertial/GNSS/UWB[J]. Electronic Measurement Technology, 2019, 42(16): 94-100 (in Chinese)
    [15] YANG Z W, ZHU S Y, CHEN C L, et al. Leader-follower formation control of nonholonomic mobile robots with bearing-only measurements[J]. Journal of the Franklin Institute, 2020, 357(3): 1628-1643 doi: 10.1016/j.jfranklin.2019.11.025
    [16] FU M Y, WANG D S, WANG C L. Formation control for water-jet USV based on bio-inspired method[J]. China Ocean Engineering, 2018, 32(1): 117-122 doi: 10.1007/s13344-018-0013-1
    [17] DO K D, JIANG Z P, PAN J. Underactuated ship global tracking under relaxed conditions[J]. IEEE Transactions on Automatic Control, 2002, 47(9): 1529-1536 doi: 10.1109/TAC.2002.802755
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  48
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 录用日期:  2021-12-16
  • 修回日期:  2020-05-19
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回