留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印技术在生物医药方面的应用研究进展

盛苏 陈含笑

盛苏, 陈含笑. 3D打印技术在生物医药方面的应用研究进展[J]. 机械科学与技术, 2022, 41(5): 764-770. doi: 10.13433/j.cnki.1003-8728.20200355
引用本文: 盛苏, 陈含笑. 3D打印技术在生物医药方面的应用研究进展[J]. 机械科学与技术, 2022, 41(5): 764-770. doi: 10.13433/j.cnki.1003-8728.20200355
SHENG Su, CHEN Hanxiao. Progresses on Application of 3D Printing to Biomedicine[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(5): 764-770. doi: 10.13433/j.cnki.1003-8728.20200355
Citation: SHENG Su, CHEN Hanxiao. Progresses on Application of 3D Printing to Biomedicine[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(5): 764-770. doi: 10.13433/j.cnki.1003-8728.20200355

3D打印技术在生物医药方面的应用研究进展

doi: 10.13433/j.cnki.1003-8728.20200355
基金项目: 

湖北省自然科学基金面上项目 2019CF531

湖北省高等学校优秀中青年科技创新团队项目 T2020014

详细信息
    作者简介:

    盛苏(1979-), 副教授, 硕士生导师, 研究方向为铁电功能材料、陶瓷及其复合材料增材制造技术, ssheng@hbnu.edu.cn

  • 中图分类号: TP29

Progresses on Application of 3D Printing to Biomedicine

  • 摘要: 3D打印技术的迅速发展, 使其在生物医药领域具有广泛应用。由于基于生物医药的3D打印技术在个性化定制及复杂结构调控制造上具有独特优势, 通过对生物材料或活细胞进行3D打印, 可构建复杂生物三维结构如个性化植入体、可再生人工骨、人工器官和人造血管等。导致3D生物医药打印的最大进步之一是生物材料、细胞和用于制造功能性活组织的支持组件的开发。本文主要从骨科治疗、皮肤组织、人造血管和个性化药物研发等方面描述3D打印技术在生物医药领域的应用研究现状, 并对其未来发展提出了展望。
  • 图  1  使用定制骨科解决方案的OrthoVis术前规划软件进行3D模板制作的示例

    图  2  集成的组织器官打印机(ITOP)系统[22]

    图  3  3D打印细胞成型机理

    图  4  人造血管[31]

  • [1] MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8): 773-785 doi: 10.1038/nbt.2958
    [2] LEE J M, SING S L, TAN E Y S, et al. Bioprinting in cardiovascular tissue engineering: a review[J]. International Journal of Bioprinting, 2016, 2(2): 27-36
    [3] AN J, CHUA C K. An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique[J]. Journal of Thoracic Disease, 2016, 8(12): E1723-E1725 doi: 10.21037/jtd.2016.12.92
    [4] SUNTORNNOND R, AN J, CHUA C K. Bioprinting of thermoresponsive hydrogels for next generation tissue engineering: a review[J]. Macromolecular Materials and Engineering, 2017, 302(1): 1600266 doi: 10.1002/mame.201600266
    [5] BERMAN B. 3-D printing: the new industrial revolution[J]. Business Horizons, 2012, 55(2): 155-162 doi: 10.1016/j.bushor.2011.11.003
    [6] 董庆, 曹守强, 刘恋, 等. 3D打印肺段模型在胸外科解剖教学中的应用[J]. 现代生物医学进展, 2017, 17(7): 1368-1370, 1356 https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201707045.htm

    DONG Q, CAO S Q, LIU L, et al. Application of 3D printing lung segment model in the teaching of anatomy in the department of thoracic surgery[J]. Progress in Modern Biomedicine, 2017, 17(7): 1368-1370, 1356 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201707045.htm
    [7] MCMENAMIN P G, QUAYLE M R, MCHENRY C R, et al. The production of anatomical teaching resources using Three-Dimensional (3D) printing technology[J]. Anatomical Sciences Education, 2014, 7(6): 479-486 doi: 10.1002/ase.1475
    [8] 黄健, 姜山. 3D打印技术将掀起"第三次工业革命"[J]. 新材料产业, 2013(1): 62-67 https://www.cnki.com.cn/Article/CJFDTOTAL-XCLY201301013.htm

    HUANG J, JIANG S. 3D printing technology will set off the "third industrial revolution"[J]. Advanced Materials Industry, 2013(1): 62-67 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XCLY201301013.htm
    [9] MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8): 773-785 doi: 10.1038/nbt.2958
    [10] CALVERT P. Printing cells[J]. Science, 2007, 318(5848): 208-209 doi: 10.1126/science.1144212
    [11] DERBY B. Printing and prototyping of tissues and scaffolds[J]. Science, 2012, 338(6109): 921-926 doi: 10.1126/science.1226340
    [12] LIPSON H, KURMAN M. Fabricated[M]. Indianapolis: John Wiley & Sons, 2003
    [13] LEE J Y, AN J, CHUA C K. Fundamentals and applications of 3D printing for novel materials[J]. Applied Materials Today, 2017, 7: 120-133 doi: 10.1016/j.apmt.2017.02.004
    [14] CHUA C K, YEONG W Y, AN J. Special issue "biomaterials and bioprinting"[J]. Molecules, 2016, 21(9): 1231 doi: 10.3390/molecules21091231
    [15] SUNTORNNOND R, TAN E Y S, AN J, et al. A mathematical model on the resolution of extrusion bioprinting for the development of new bioinks[J]. Materials, 2016, 9(9): 756 doi: 10.3390/ma9090756
    [16] DERBY B. Printing and prototyping of tissues and scaffolds[J]. Science, 2012, 338(6109): 921-926 doi: 10.1126/science.1226340
    [17] LI H J, LIU S J, LIN L. Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide[J]. International Journal of Bioprinting, 2016, 2(2): 54-66
    [18] NG W L, YEONG W Y, NAING M W. Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering[J]. International Journal of Bioprinting, 2016, 2(1): 53-62
    [19] TZAVELLAS A N, KENANIDIS E, POTOUPNIS M, et al. 3D printing in orthopedic surgery[M]//TSOULFAS G, BANGEAS P I, SURI J S. 3D Printing: Applications in Medicine and Surgery. Amsterdam: Elsevier, 2020
    [20] IANNOTTI J P, WEINER S, RODRIGUEZ E, et al. Three-dimensional imaging and templating improve glenoid implant positioning[J]. The Journal of Bone and Joint Surgery, 2015, 97(8): 651-658 doi: 10.2106/JBJS.N.00493
    [21] WERNER B S, HUDEK R, BURKHART K J, et al. The influence of three-dimensional planning on decision-making in total shoulder arthroplasty[J]. Journal of Shoulder and Elbow Surgery, 2017, 26(8): 1477-1483 doi: 10.1016/j.jse.2017.01.006
    [22] KANG H W, LEE S J, KO I K, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nature Biotechnology, 2016, 34(3): 312-319 doi: 10.1038/nbt.3413
    [23] LIND J U, BUSBEE T A, VALENTINE A D, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing[J]. Nature Materials, 2017, 16(3): 303-308 doi: 10.1038/nmat4782
    [24] HOCH E, TOVAR G E M, BORCHERS K. Bioprinting of artificial blood vessels: current approaches towards a demanding goal[J]. European Journal of Cardio-Thoracic Surgery, 2014, 46(5): 767-778 doi: 10.1093/ejcts/ezu242
    [25] KURODA S, KOBAYASHI T, OHDAN H. 3D printing model of the intrahepatic vessels for navigation during anatomical resection of hepatocellular carcinoma[J]. International Journal of Surgery Case Reports, 2017, 41: 219-222 doi: 10.1016/j.ijscr.2017.10.015
    [26] ZHANG W J, LIU W, CUI L, et al. Tissue engineering of blood vessel[J]. Journal of Cellular and Molecular Medicine, 2007, 11(5): 945-957 doi: 10.1111/j.1582-4934.2007.00099.x
    [27] ELOMAA L, YANG Y P. Additive manufacturing of vascular grafts and vascularized tissue constructs[J]. Tissue Engineering Part B: Reviews, 2017, 23(5): 436-450 doi: 10.1089/ten.teb.2016.0348
    [28] KESARI P, XU T, BOLAND T. Layer-by-layer printing of cells and its application to tissue engineering[J]. MRS Online Proceedings Library, 2004, 845(1): 5-11
    [29] SAHMANI S, SHAHALI M, NEJAD M G, et al. Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering[J]. The European Physical Journal Plus, 2019, ;34(1): 7
    [30] ITOH M, NAKAYAMA K, NOGUCHI R, et al. Scaffold-free tubular tissues created by a Bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae[J]. PLoS One, 2015, 10(9): e0136681 doi: 10.1371/journal.pone.0136681
    [31] ESMAEILI S, SHAHALI M, KORDJAMSHIDI A, et al. An artificial blood vessel fabricated by 3D printing for pharmaceutical application[J]. Nanomedicine Journal, 2019, 6(3): 183-194
    [32] BANKS J. Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization[J]. IEEE Pulse, 2013, 4(6): 22-26 doi: 10.1109/MPUL.2013.2279617
    [33] URSAN I D, CHIU L, PIERCE A. Three-dimensional drug printing: a structured review[J]. Journal of the American Pharmacists Association, 2013, 53(2): 136-144 doi: 10.1331/JAPhA.2013.12217
    [34] KHALED S A, BURLEY J C, ALEXANDER M R, et al. Desktop 3D printing of controlled release pharmaceutical bilayer tablets[J]. International Journal of Pharmaceutics, 2014, 461(1-2): 105-111 doi: 10.1016/j.ijpharm.2013.11.021
    [35] LEE VENTOLA C. Medical applications for 3D printing: current and projected uses[J]. P & T, 2014, 39(10): 704-711
    [36] AWAD A, TRENFIELD S J, GAISFORD S, et al. 3D printed medicines: a new branch of digital healthcare[J]. International Journal of Pharmaceutics, 2018, 548(1): 586-596 doi: 10.1016/j.ijpharm.2018.07.024
    [37] KADRY H, AL-HILAL T A, KESHAVARZ A, et al. Multi-purposable filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption[J]. International Journal of Pharmaceutics, 2018, 544(1): 285-296 doi: 10.1016/j.ijpharm.2018.04.010
    [38] TAGAMI T, NAGATA N, HAYASHI N, et al. Defined drug release from 3D-printed composite tablets consisting of drug-loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler[J]. International Journal of Pharmaceutics, 2018, 543(1-2): 361-367 doi: 10.1016/j.ijpharm.2018.03.057
    [39] NORMAN J, MADURAWE R D, MOORE C M V, et al. A new chapter in pharmaceutical manufacturing: 3D-printed drug products[J]. Advanced Drug Delivery Reviews, 2017, 108: 39-50 doi: 10.1016/j.addr.2016.03.001
    [40] HORNUNG C H. The art of manufacturing molecules[J]. Science, 2018, 359(6373): 273-274 doi: 10.1126/science.aar4543
    [41] MOULTON S E, WALLACE G G. 3-dimensional (3D) fabricated polymer based drug delivery systems[J]. Journal of Controlled Release, 2014, 193: 27-34 doi: 10.1016/j.jconrel.2014.07.005
    [42] TRENFIELD S J, AWAD A, GOYANES A, et al. 3D printing pharmaceuticals: drug development to frontline care[J]. Trends in Pharmacological Sciences, 2018, 39(5): 440-451 doi: 10.1016/j.tips.2018.02.006
  • 加载中
图(4)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  60
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-20
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回