留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛合金超声振动辅助切削锯齿形切屑形成机理的数值分析

陈德雄 陈金国

陈德雄, 陈金国. 钛合金超声振动辅助切削锯齿形切屑形成机理的数值分析[J]. 机械科学与技术, 2022, 41(2): 270-277. doi: 10.13433/j.cnki.1003-8728.20200353
引用本文: 陈德雄, 陈金国. 钛合金超声振动辅助切削锯齿形切屑形成机理的数值分析[J]. 机械科学与技术, 2022, 41(2): 270-277. doi: 10.13433/j.cnki.1003-8728.20200353
CHEN Dexiong, CHEN Jinguo. Numerical Analysis of Serrated Chip Formation Mechanism of Titanium Alloy in Ultrasonic Vibration Assisted Machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 270-277. doi: 10.13433/j.cnki.1003-8728.20200353
Citation: CHEN Dexiong, CHEN Jinguo. Numerical Analysis of Serrated Chip Formation Mechanism of Titanium Alloy in Ultrasonic Vibration Assisted Machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 270-277. doi: 10.13433/j.cnki.1003-8728.20200353

钛合金超声振动辅助切削锯齿形切屑形成机理的数值分析

doi: 10.13433/j.cnki.1003-8728.20200353
基金项目: 

莆田学院校级科研项目 2019125

详细信息
    作者简介:

    陈德雄(1991-), 助教, 硕士, 研究方向为先进制造技术, chendexiong219@163.com

  • 中图分类号: TH16

Numerical Analysis of Serrated Chip Formation Mechanism of Titanium Alloy in Ultrasonic Vibration Assisted Machining

  • 摘要: 超声振动辅助切削(UVAM)作为一种新颖而有效的加工技术,可有效提高工件的切削加工性能,被广泛应用于钛合金切削加工领域。建立热-力耦合模型仿真超声振动切削钛合金Ti6Al4V的瞬态切削过程,研究不同振幅对钛合金锯齿切屑的影响。数值研究结果表明:超声振动与切削速度的耦合作用导致材料出现大塑性变形,且高温是形成锯齿形切屑的主要原因。随着振动振幅的增大,切屑的弯曲半径、锯齿齿距和锯齿化系数均随之增大。本文结论为钛合金超声振动辅助切削的锯齿形切屑形成机理研究提供了参考。
  • 图  1  超声振动切削几何模型

    图  2  不同切削速度的切屑形貌

    图  3  锯齿形切屑形成过程中的温度变化

    图  4  锯齿形切屑形成过程中的等效塑性应变

    图  5  振幅对锯齿切屑弯曲程度的影响

    图  6  锯齿形切屑表征

    图  7  振幅对锯齿化系数Gs的影响

    图  8  振幅对齿距Ls的影响

    图  9  沿锯齿切屑预定路径上各参数的变化

    表  1  Ti6Al4V的物理和热力学性能参数[14]

    参数 数值
    线膨胀系数a/(m·(m·℃)-1) 9.6×10-6
    比热容c/(J·(kg·℃)-1) 526.3
    密度ρ/(kg·m-3) 4.43×103
    弹性模量E/MPa 1.14×105
    泊松比v 0.342
    热导率η/(W·(m·℃)-1) 6.785
    下载: 导出CSV

    表  2  仿真工艺参数[17]

    参数 取值
    切削速度V/(m·min-1) 40, 80, 120, 160
    进给量f/(mm·r-1) 0.1
    工件切削厚度d/mm 2
    刀具前角α/(°) 0
    刀具后角β/(°) 7
    刀尖半径r/μm 25
    下载: 导出CSV
  • [1] ELLYSON B, BROCHU M, BROCHU M. Characterization of bending vibration fatigue of SLM fabricated Ti-6Al-4V[J]. International Journal of Fatigue, 2017, 99: 25-34 doi: 10.1016/j.ijfatigue.2017.02.005
    [2] LIU X Y, CHU P K, DING C X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science and Engineering: R: Reports, 2004, 47(3-4): 49-121 doi: 10.1016/j.mser.2004.11.001
    [3] EZUGWU E O. Key improvements in the machining of difficult-to-cut aerospace superalloys[J]. International Journal of Machine Tools and Manufacture, 2005, 45(12-13): 1353-1367 doi: 10.1016/j.ijmachtools.2005.02.003
    [4] 史振宇, 崔鹏, 李鑫, 等. 基于纤维增强复合材料的超声振动辅助加工技术综述[J]. 表面技术, 2019, 48(1): 305-319 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201901041.htm

    SHI Z Y, CUI P, LI X, et al. Overview of ultrasonic vibration assisted machining technology on fiber reinforced composites[J]. Surface Technology, 2019, 48(1): 305-319 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201901041.htm
    [5] PEI L, WU H B. Effect of ultrasonic vibration on ultra-precision diamond turning of Ti6Al4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 433-440 doi: 10.1007/s00170-019-03563-y
    [6] MAROJU N K, PASAM V K. FE modeling and experimental analysis of residual stresses in vibration assisted turning of Ti6Al4V[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(3): 417-425 doi: 10.1007/s12541-019-00021-3
    [7] HU K M, LO S L, WU H B, et al. Study on influence of ultrasonic vibration on the ultra-precision turning of Ti6Al4V alloy based on simulation and experiment[J]. IEEE Access, 2019, 7: 33640-33651 doi: 10.1109/ACCESS.2019.2896731
    [8] PATIL S, JOSHI S, TEWARI A, et al. Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V[J]. Ultrasonics, 2014, 54(2): 694-705 doi: 10.1016/j.ultras.2013.09.010
    [9] ZHANG J J, WANG D Z. Investigations of tangential ultrasonic vibration turning of Ti6Al4V using finite element method[J]. International Journal of Material Forming, 2019, 12(2): 257-267 doi: 10.1007/s12289-018-1402-y
    [10] 王伏林, 陶琪, 肖珞琼, 等. 材料本构参数对高速切削锯齿形切屑形成的数值分析[J]. 机械科学与技术, 2018, 37(2): 263-269 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201802017.htm

    WANG F L, TAO Q, XIAO L Q, et al. Numerical analysis of influence of material constitutive parameters on serrated chip formation in high speed machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(2): 263-269 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201802017.htm
    [11] WANG F Z, ZHAO J, LI A H, et al. Three-dimensional finite element modeling of high-speed end milling operations of Ti-6Al-4V[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 228(6): 893-902 doi: 10.1177/0954405413509375
    [12] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature[C]//Proceedings of the 7th International Symposium on Ballistics. Hague: IBC, 1983: 541-547
    [13] ZANG J, ZHAO J, LI A H, et al. Serrated chip formation mechanism analysis for machining of titanium alloy Ti-6Al-4V based on thermal property[J]. International Journal of Advanced Manufacturing Technology, 2018, 98(1-4): 119-127 doi: 10.1007/s00170-017-0451-6
    [14] CHOI H J, PARK C W, KANG I S, et al. Material model application considering strain softening for cutting simulation of Ti-6Al-4V alloy and its experimental validation[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(12): 1651-1658 doi: 10.1007/s12541-016-0191-9
    [15] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48 doi: 10.1016/0013-7944(85)90052-9
    [16] HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781 doi: 10.1016/0008-8846(76)90007-7
    [17] SONG X H, LI A H, LV M H, et al. Finite element simulation study on pre-stress multi-step cutting of Ti-6Al-4V titanium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5-8): 2761-2771 doi: 10.1007/s00170-019-04122-1
    [18] KOMANDURI R, BROWN R H. On the mechanics of chip segmentation in machining[J]. Journal of Engineering for Industry, 1981, 103(1): 33-51 doi: 10.1115/1.3184458
    [19] ZHAO W, GONG L, REN F, et al. Experimental study on chip deformation of Ti-6Al-4V titanium alloy in cryogenic cutting[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12): 4021-4027 doi: 10.1007/s00170-018-1890-4
    [20] SCHULZ H, ABELE E, SAHM A. Material aspects of chip formation in HSC machining[J]. CIRP Annals, 2001, 50(1): 45-48 doi: 10.1016/S0007-8506(07)62067-8
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  78
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回