留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用状态反馈的无人车路径跟踪横向控制

寇发荣 杨慧杰 张新乾 郑文博 王思俊

寇发荣, 杨慧杰, 张新乾, 郑文博, 王思俊. 采用状态反馈的无人车路径跟踪横向控制[J]. 机械科学与技术, 2022, 41(1): 143-150. doi: 10.13433/j.cnki.1003-8728.20200330
引用本文: 寇发荣, 杨慧杰, 张新乾, 郑文博, 王思俊. 采用状态反馈的无人车路径跟踪横向控制[J]. 机械科学与技术, 2022, 41(1): 143-150. doi: 10.13433/j.cnki.1003-8728.20200330
KOU Farong, YANG Huijie, ZHANG Xinqian, ZHENG Wenbo, WANG Sijun. A Lateral Control Strategy for Unmanned Vehicle Path Tracking using State Feedback[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(1): 143-150. doi: 10.13433/j.cnki.1003-8728.20200330
Citation: KOU Farong, YANG Huijie, ZHANG Xinqian, ZHENG Wenbo, WANG Sijun. A Lateral Control Strategy for Unmanned Vehicle Path Tracking using State Feedback[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(1): 143-150. doi: 10.13433/j.cnki.1003-8728.20200330

采用状态反馈的无人车路径跟踪横向控制

doi: 10.13433/j.cnki.1003-8728.20200330
基金项目: 

国家自然科学基金项目 51775426

西安市科技计划项目 21XJZZ0039

咸阳市重点研发计划项目 2021ZDYF-GY-0027

详细信息
    作者简介:

    寇发荣(1973-), 教授, 博士生导师, 研究方向为智能车辆控制, koufarong@xust.edu.cn

  • 中图分类号: U461

A Lateral Control Strategy for Unmanned Vehicle Path Tracking using State Feedback

  • 摘要: 针对采用传统模型预测控制器的车辆在弯道内跟踪精度难以保证的问题, 本文提出了一种基于状态反馈的路径跟踪横向控制策略。基于车辆动力学模型, 建立考虑轮胎滑移包络线约束条件的路径跟踪模型预测控制器, 并根据车速选择合适的控制器时域参数; 以车辆质心位置为控制点建立车辆跟踪误差模型, 结合车辆当前位置横摆角偏差建立状态反馈调节器, 通过LQR最优控制方法对无人车姿态进行校正。利用MATLAB/Simulink和Carsim软件对改进的状态反馈控制策略进行了仿真验证, 典型双移线道路仿真试验表明: 中低车速下车辆路径跟踪横向偏差降低了16 %以上, 横摆角偏差降低了33 %以上, 所设计控制器能够有效提高车辆路径跟踪精度, 可保证车辆对变曲率弯道具有适应性和行驶稳定性。
  • 图  1  3自由度车辆模型

    图  2  路径跟踪控制器框图

    图  3  车辆滑移稳定性包络线约束

    图  4  车辆跟踪误差模型

    图  5  双移线工况

    图  6  不同车速和预测时域的跟踪误差

    图  7  36 km/h车速仿真结果

    图  8  72 km/h车速仿真结果

    图  9  108 km/h车速仿真结果

    表  1  不同速度下确定的预测步长

    车速v/(km·h-1) 预测步长Np 控制步长Nc
    36 10 5
    72 10 5
    108 18 9
    下载: 导出CSV

    表  2  车辆参数及权重矩阵设置

    模型参数 数值
    整车质量m/kg 1 723
    车辆轴转动惯量Iz/(kg·m2) 4 175
    质心距前轴距离a/m 1.04
    质心距后轴距离b/m 1.56
    前轮侧偏刚度Cf/(N·rad-1) -66 900
    后轮侧偏刚度Cr/(N·rad-1) -62 700
    路面附着系数μ 1
    车辆滑移率s 0.2
    离散时间步长tp/s 0.04
    权重系数ρ 1 000
    输出量的权重矩阵Q [200, 100, 10, 10]
    控制量的权重矩阵R 50 000
    前轮转角δf/(°) [-10, 10]
    下载: 导出CSV

    表  3  双移线工况横向偏差对比

    车速/(km·h-1) 指标/m 传统MPC 状态反馈MPC 改善程度/%
    36 平均偏差 0.165 0.138 16.5
    最大偏差 0.518 0.353 31.7
    72 平均偏差 0.225 0.148 34.0
    最大偏差 0.681 0.454 33.3
    108 平均偏差 0.512 0.494 3.3
    最大偏差 1.261 1.350 -7.0
    下载: 导出CSV

    表  4  双移线工况横摆角偏差对比

    车速/(km·h-1) 指标/m 传统MPC 状态反馈MPC 改善程度/%
    36 平均偏差 0.029 0.019 35.1
    最大偏差 0.089 0.059 33.4
    72 平均偏差 0.018 0.007 61.5
    最大偏差 0.070 0.027 61.1
    108 平均偏差 0.035 0.030 14.7
    最大偏差 0.110 0.092 16.2
    下载: 导出CSV
  • [1] 李立, 徐志刚, 赵祥模, 等. 智能网联汽车运动规划方法研究综述[J]. 中国公路学报, 2019, 32(6): 20-33 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906003.htm

    LI L, XU Z G, ZHAO X M, et al. Review of motion planning methods of intelligent connected vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 20-33 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906003.htm
    [2] KLOMP M, JONASSON M, LAINE L, et al. Trends in vehicle motion control for automated driving on public roads[J]. Vehicle System Dynamics, 2019, 57(7): 1028-1061 doi: 10.1080/00423114.2019.1610182
    [3] 熊璐, 杨兴, 卓桂荣, 等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报, 2020, 56(10): 127-143 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010017.htm

    XIONG L, YANG X, ZHUO G R, et al. Review on motion control of autonomous vehicles[J]. Journal of Mechanical Engineering, 2020, 56(10): 127-143 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010017.htm
    [4] 席裕庚. 预测控制[M]. 2版. 北京: 国防工业出版社, 2013

    XI Y G. Redictive control[M]. 2nd ed. Beijing: National Defense Industry Press, 2013 (in Chinese)
    [5] 陈慧岩, 陈舒平, 龚建伟. 智能汽车横向控制方法研究综述[J]. 兵工学报, 2017, 38(6): 1203-1214 doi: 10.3969/j.issn.1000-1093.2017.06.021

    CHEN H Y, CHEN S P, GONG J W. A review on the research of lateral control for intelligent vehicles[J]. Acta Armamentarii, 2017, 38(6): 1203-1214 (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.06.021
    [6] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014: 35-50

    GONG J W, JIANG Y, XU W. Model predictive control for self-driving vehicles[M]. Beijing: Beijing Institute of Technology Press, 2014: 35-50 (in Chinese)
    [7] FALCONE P. Nonlinear Model predictive control for autonomous vehicles[D]. Benevento: University of Sannio, 2007
    [8] FUNKE J, BROWN M, ERLIEN S M, et al. Collision avoidance and stabilization for autonomous vehicles in emergency scenarios[J]. IEEE Transactions on Control Systems Technology, 2017, 25(4): 1204-1216 doi: 10.1109/TCST.2016.2599783
    [9] 梁赫奇. 基于模型预测控制的底盘分层集成控制算法研究[D]. 长春: 吉林大学, 2011

    LIANG H Q. Research on hierarchical chassis integrated control based on model predictive control method[D]. Changchun: Jilin University, 2011 (in Chinese)
    [10] 刘凯, 陈慧岩, 龚建伟, 等. 高速无人驾驶车辆的操控稳定性研究[J]. 汽车工程, 2019, 41(5): 514-521 https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201905007.htm

    LIU K, CHEN H Y, GONG J W, et al. A research on handling stability of high-speed unmanned vehicles[J]. Automotive Engineering, 2019, 41(5): 514-521 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201905007.htm
    [11] 赵治国, 周良杰, 朱强. 无人驾驶车辆路径跟踪控制预瞄距离自适应优化[J]. 机械工程学报, 2018, 54(24): 166-173 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201824020.htm

    ZHAO Z G, ZHOU L J, ZHU Q. Preview distance adaptive optimization for the path tracking control of unmanned vehicle[J]. Journal of Mechanical Engineering, 2018, 54(24): 166-173 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201824020.htm
    [12] 白国星, 孟宇, 刘立, 等. 基于可变预测时域及速度的车辆路径跟踪控制[J]. 中国机械工程, 2020, 31(11): 1277-1284 doi: 10.3969/j.issn.1004-132X.2020.11.003

    BAI G X, MENG Y, LIU L, et al. Path tracking control of vehicles based on variable prediction horizon and velocity[J]. China Mechanical Engineering, 2020, 31(11): 1277-1284 (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.11.003
    [13] 陈无畏, 王家恩, 汪明磊, 等. 视觉导航智能车辆横向运动的自适应预瞄控制[J]. 中国机械工程, 2014, 25(5): 698-704 doi: 10.3969/j.issn.1004-132X.2014.05.023

    CHEN W W, WANG J E, WANG M L, et al. Adaptive preview control of vision guided intelligent vehicle lateral movement[J]. China Mechanical Engineering, 2014, 25(5): 698-704 (in Chinese) doi: 10.3969/j.issn.1004-132X.2014.05.023
    [14] SNIDER J M. Automatic steering methods for autonomous automobile path tracking[R]. Pittsburgh, PA: Carnegie Mellon University, 2009
    [15] KAPANIA N R, GERDES J C. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling[J]. Vehicle System Dynamics, 2015, 53(12): 1687-1704 doi: 10.1080/00423114.2015.1055279
    [16] 魏建伟, 赵万忠. 新型电动轮转向系统AFS与DYC联合控制策略[J]. 机械科学与技术, 2018, 37(1): 108-114 doi: 10.3969/j.issn.2095-509X.2018.01.025

    WEI J W, ZHAO W Z. Combination control strategy of AFS and DYC for a novel differential steering system with in-wheel motor[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1): 108-114 (in Chinese) doi: 10.3969/j.issn.2095-509X.2018.01.025
    [17] 沈智鹏. 最优控制[M]. 大连: 大连海事大学出版社, 2013: 53-55

    SHEN Z P. Optimal control[M]. Dalian: Dalian Maritime University Press, 2013: 53-55 (in Chinese)
    [18] BROWN M, FUNKE J, ERLIEN S, et al. Safe driving envelopes for path tracking in autonomous vehicles[J]. Control Engineering Practice, 2017, 61: 307-316 doi: 10.1016/j.conengprac.2016.04.013
    [19] ACKERMANN J. Robust control: the parameter space approach[M]. London: Springer Science & Business Media, 2012: 272-285
    [20] HOFFMANN G M, TOMLIN C J, MONTEMERLO M, et al. Autonomous automobile trajectory tracking for off-road driving: controller design, experimental validation and racing[C]//Proceedings of 2007 American Control Conference. New York: IEEE, 2007: 2296-2301
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  51
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-12
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回