留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿猫爪掌垫子午线轮胎胎冠设计

刘从臻 李永强 孙运芬 谢孟雨 徐成伟

刘从臻, 李永强, 孙运芬, 谢孟雨, 徐成伟. 仿猫爪掌垫子午线轮胎胎冠设计[J]. 机械科学与技术, 2022, 41(2): 186-191. doi: 10.13433/j.cnki.1003-8728.20200323
引用本文: 刘从臻, 李永强, 孙运芬, 谢孟雨, 徐成伟. 仿猫爪掌垫子午线轮胎胎冠设计[J]. 机械科学与技术, 2022, 41(2): 186-191. doi: 10.13433/j.cnki.1003-8728.20200323
LIU Congzhen, LI Yongqiang, SUN Yunfen, XIE Mengyu, XU Chengwei. Crown Design of Radial Tire Bio-inspired by Cat Paw Pads[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 186-191. doi: 10.13433/j.cnki.1003-8728.20200323
Citation: LIU Congzhen, LI Yongqiang, SUN Yunfen, XIE Mengyu, XU Chengwei. Crown Design of Radial Tire Bio-inspired by Cat Paw Pads[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 186-191. doi: 10.13433/j.cnki.1003-8728.20200323

仿猫爪掌垫子午线轮胎胎冠设计

doi: 10.13433/j.cnki.1003-8728.20200323
基金项目: 

山东省自然科学基金项目 51875327

国家自然科学基金项目 ZR2018LE010

详细信息
    作者简介:

    刘从臻(1979-), 副教授, 硕士生导师, 研究方向为轮胎力学性能分析与优化设计, lcz200811@163.com

  • 中图分类号: U463.3

Crown Design of Radial Tire Bio-inspired by Cat Paw Pads

  • 摘要: 为缓解轮胎抓地与磨损性能间的固有矛盾,以某205/55R16乘用车子午线轮胎为研究对象,对轮胎胎冠进行仿生设计。采用WALKWAY压力测试系统获取猫前爪动态接地特性,并配合3D激光扫描仪进行逆向拓扑。对猫爪掌垫横截面点云进行多项式拟合并采用相似原理对胎冠进行仿生设计。利用ABAQUS建立模型,对比仿生胎与样胎静载、制动、侧偏工况下接地面积与压力分布。结果表明:仿生轮胎设计可有效增大接地面积,降低峰值接地压力,改善轮胎偏磨损现象,实现轮胎抓地与磨损性能协同提升。
  • 图  1  试验台原理图

    图  2  地面垂直反力变化曲线

    图  3  猫爪接地面积变化曲线

    图  4  猫前爪各部位反力变化曲线(1.34 m/s)

    图  5  点云处理过程

    图  6  猫爪掌垫点云横截面拟合曲线

    图  7  仿生胎冠弧设计示意图

    图  8  静态加载试验

    图  9  载荷-下沉量曲线

    图  10  静负荷下接地印迹形状

    图  11  轮胎静载接地压力分布

    图  12  轮胎制动接地压力分布

    图  13  样胎稳态侧偏接地压力分布

    图  14  仿生轮胎稳态侧偏接地压力分布

    表  1  加强筋材料属性

    Rebar材料 杨氏模量/GPa 泊松比 密度/(kg·m-3) 角度/(°)
    1#带束层钢丝 105.9 0.29 7 800 66
    2#带束层钢丝 105.9 0.29 7 800 114
    胎体帘线层 5.25 0.30 1 350 0
    下载: 导出CSV

    表  2  接地印迹试验与仿真数值

    接地参数 试验值 仿真值 相对误差/%
    长轴长度/mm 151.70 148.67 2.0
    短轴长度/mm 117.04 114.19 2.4
    印迹面积/cm2 156.73 150.96 3.7
    下载: 导出CSV

    表  3  轮胎制动接地参数

    方案 抓地力/N 接地压力/MPa 接地压力标准差/MPa 接地面积/cm2
    样胎 3 511 0.682 70 0.139 72 151.93
    仿生轮胎 3 537 0.609 40 0.129 03 155.32
    差值/% 0.7 -10.8 -7.7 2.2
    下载: 导出CSV

    表  4  轮胎稳态侧偏接地数据

    侧偏角度 侧偏力/N 峰值接地压力/MPa 接地压力标准差/MPa 接地面积/cm2
    样胎 仿生轮胎 差值 样胎 仿生轮胎 差值 样胎 仿生轮胎 差值 样胎 仿生轮胎 差值
    626 631 0.8% 5.903 5 5.285 2 -10.5% 0.1272 0.118 6 -6.8% 148.87 152.60 2.5%
    1 190 1 207 1.4% 6.357 4 5.716 9 -10.1% 0.133 2 0.128 4 -3.6% 139.20 143.34 3.0%
    1 760 1 791 1.8% 6.793 9 6.031 1 -11.2% 0.160 4 0.154 1 -3.9% 144.19 149.34 3.6%
    2 086 2 134 2.3% 7.222 2 6.716 2 -7.0% 0.171 1 0.166 6 -2.6% 141.27 149.58 5.9%
    下载: 导出CSV
  • [1] TANAKA Y, OHISHI K. Unified approach to optimization of tread pattern shape and cross-sectional contour of tires[J]. Tire Science and Technology, 2010, 38(4): 276-285 doi: 10.2346/1.3519639
    [2] 梁晨. 子午线轮胎综合接地性能评价体系与方法研究[D]. 镇江: 江苏大学, 2013

    LIANG C. Research on radial tire comprehensive ground performance evaluation system and method[D]. Zhenjiang: Jiangsu University, 2013 (in Chinese)
    [3] 彭旭东, 郭孔辉, 丁玉华, 等. 橡胶和轮胎的摩擦[J]. 橡胶工业, 2003, 50(9): 562-568 doi: 10.3969/j.issn.1000-890X.2003.09.013

    PENG X D, GUO K H, DING Y H, et al. Friction of rubber and tire[J]. China Rubber Industry, 2003, 50(9): 562-568 (in Chinese) doi: 10.3969/j.issn.1000-890X.2003.09.013
    [4] CHO J R, CHOI J H, KIM Y S. Abrasive wear amount estimate for 3D patterned tire utilizing frictional dynamic rolling analysis[J]. Tribology International, 2011, 44(7-8): 850-858 doi: 10.1016/j.triboint.2011.02.007
    [5] 唐源, 张春华, 田庆丰, 等. 高性能轮胎胎面胶"魔三角"性能平衡研究进展[J]. 橡胶工业, 2019, 66(5): 388-394

    TANG Y, ZHANG C H, TIAN Q F, et al. Research progress on performance balance of "Magic Triangle" of high performance tire tread rubber[J]. China Rubber Industry, 2019, 66(5): 388-394 (in Chinese)
    [6] 蓝蓝, 房岩, 纪丁琪, 等. 仿生学应用进展与展望[J]. 科技传播, 2019, 11(22): 149-150, 153 doi: 10.3969/j.issn.1674-6708.2019.22.070

    LAN L, FANG Y, JI D Q, et al. Application progress and prospect of bionics[J]. Public Communication of Science & Technology, 2019, 11(22): 149-150, 153 (in Chinese) doi: 10.3969/j.issn.1674-6708.2019.22.070
    [7] 叶建, 黄心颖, 杨菊, 等. 马蹄莲花型仿生节能建筑设计建造技术[J]. 建设科技, 2019(11): 70-76 https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS201911017.htm

    YE J, HUANG X L, YANG J, et al. Design and construction technology of calla lily bionic energy-saving building[J]. Construction Science and Technology, 2019(11): 70-76 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS201911017.htm
    [8] 何远. 仿鸵鸟后肢节能减振机械腿研究[D]. 长春: 吉林大学, 2018

    HE Y. Bionic research in energy-saving and vibration-reducing mechanical leg based on hind limb of ostrich[D]. Changchun: Jilin University, 2018 (in Chinese)
    [9] 徐路, 周利坤, 成洁. 仿生轮胎研究发展现状及展望[J]. 橡胶工业, 2018, 65(1): 113-115 doi: 10.3969/j.issn.1000-890X.2018.01.024

    XU L, ZHOU L K, CHENG J. Development status and prospect of bionic tire research[J]. China Rubber Industry, 2018, 65(1): 113-115 (in Chinese) doi: 10.3969/j.issn.1000-890X.2018.01.024
    [10] 周利坤, 王洪伟. 仿章鱼吸盘式轮胎花纹设计与有限元分析[J]. 西安理工大学学报, 2013, 29(2): 228-231 doi: 10.3969/j.issn.1006-4710.2013.02.020

    ZHOU L K, WANG H W. Imitation octopus sucker-type tire tread pattern design and finite element analysis[J]. Journal of Xi'an University of Technology, 2013, 29(2): 228-231 (in Chinese) doi: 10.3969/j.issn.1006-4710.2013.02.020
    [11] 李杰, 庄继德, 魏东. 沙漠仿生轮胎的静态特性和动态特性研究[J]. 农业机械学报, 2007, 38(9): 30-33 doi: 10.3969/j.issn.1000-1298.2007.09.008

    LI J, ZHUANG J D, WEI D. Static and dynamic performances of bionic camel foot tire[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(9): 30-33 (in Chinese) doi: 10.3969/j.issn.1000-1298.2007.09.008
    [12] 丛茜, 封云, 任露泉. 仿生非光滑沟槽形状对减阻效果的影响[J]. 水动力学研究与进展, 2006, 21(2): 232-238 doi: 10.3969/j.issn.1000-4874.2006.02.012

    CONG Q, FENG Y, REN L Q. Affecting of riblets shape of nonsmooth surface on drag reduction[J]. Journal of Hydrodynamics, 2006, 21(2): 232-238 (in Chinese) doi: 10.3969/j.issn.1000-4874.2006.02.012
    [13] 王国林, 马银伟, 梁晨, 等. 仿蝗虫脚掌的子午线轮胎胎冠结构设计[J]. 机械工程学报, 2013, 49(12): 131-135 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201312019.htm

    WANG G L, MA Y W, LIANG C, et al. Locust's pads bionic structural design of radial tire crown[J]. Journal of Mechanical Engineering, 2013, 49(12): 131-135 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201312019.htm
    [14] 樊沙沙, 周海超, 陈磊. 凹坑型仿生轮胎花纹降噪分析[J]. 科技创新导报, 2015, 12(21): 57-58, 61 doi: 10.3969/j.issn.1674-098X.2015.21.027

    FAN S S, ZHOU H C, CHEN L. Noise reduction analysis of bionic tire pattern with pits[J]. Science and Technology Innovation Herald, 2015, 12(21): 57-58, 61 (in Chinese) doi: 10.3969/j.issn.1674-098X.2015.21.027
    [15] ALEXANDER R M, JAYES A S. A dynamic similarity hypothesis for the gaits of quadrupedal mammals[J]. Journal of Zoology, 1983, 201(1): 135-152 doi: 10.1111/j.1469-7998.1983.tb04266.x
    [16] 刘亚中. 仿猫科类四足机器人匍匐运动步态规划及控制方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2018

    LIU Y Z. Research on creeping motion gait planning and control methods for imitation cats quadruped robot[D]. Harbin: Harbin University of Science and Technology, 2018 (in Chinese)
    [17] 左欢欢. 相似性原理的应用探究[J]. 产业与科技论坛, 2016, 15(20): 73 doi: 10.3969/j.issn.1673-5641.2016.20.039

    ZUO H H. Application of similarity principle[J]. Industrial and Science Tribune, 2016, 15(20): 73 (in Chinese) doi: 10.3969/j.issn.1673-5641.2016.20.039
    [18] 姚震. 基于ABAQUS建模的轮胎接地性态分析[D]. 宁波: 宁波大学, 2015

    YAO Z. Modeling and contact features investigation of radial tire utilizing ABAQUS[D]. Ningbo: Ningbo University, 2015 (in Chinese)
    [19] 王军, 李梁, 孙林, 等. 245/70R16轮胎的有限元分析[J]. 轮胎工业, 2016, 36(9): 520-528 doi: 10.3969/j.issn.1006-8171.2016.09.002

    WANG J, LI L, SUN L, et al. Finite element analysis of 245/70R16 tire[J]. Tire Industry, 2016, 36(9): 520-528 (in Chinese) doi: 10.3969/j.issn.1006-8171.2016.09.002
    [20] 臧孟炎, 张彬. 轮胎制动性能FEM仿真分析和评价[J]. 汽车工程, 2014, 36(6): 699-702, 708 https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201406012.htm

    ZANG M Y, ZHANG B. FEM simulation and evaluation on tire braking performance[J]. Automotive Engineering, 2014, 36(6): 699-702, 708 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201406012.htm
    [21] 薛梓晨, 贺建芸, 丁玉梅, 等. 跑气保用轮胎在静负荷和稳态侧偏工况下力学性能的研究[J]. 橡胶工业, 2014, 61(6): 335-340 doi: 10.3969/j.issn.1000-890X.2014.06.003

    XUE Z C, HE J Y, DING Y M, et al. Mechanical properties of run-flat tire in static load and steady cornering condition[J]. China Rubber Industry, 2014, 61(6): 335-340 (in Chinese) doi: 10.3969/j.issn.1000-890X.2014.06.003
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  38
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-01
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回