留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铣削参数对碳纤维复合材料力学性能影响研究

龚佑宏 范文涛 陈燕 郭南 刘军 刘卫平

龚佑宏, 范文涛, 陈燕, 郭南, 刘军, 刘卫平. 铣削参数对碳纤维复合材料力学性能影响研究[J]. 机械科学与技术, 2022, 41(2): 300-305. doi: 10.13433/j.cnki.1003-8728.20200320
引用本文: 龚佑宏, 范文涛, 陈燕, 郭南, 刘军, 刘卫平. 铣削参数对碳纤维复合材料力学性能影响研究[J]. 机械科学与技术, 2022, 41(2): 300-305. doi: 10.13433/j.cnki.1003-8728.20200320
GONG Youhong, FAN Wentao, CHEN Yan, GUO Nan, LIU Jun, LIU Weiping. Study on Influence of Milling Parameters on Mechanical Properties of Carbon Fiber Reinforced Plastics[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 300-305. doi: 10.13433/j.cnki.1003-8728.20200320
Citation: GONG Youhong, FAN Wentao, CHEN Yan, GUO Nan, LIU Jun, LIU Weiping. Study on Influence of Milling Parameters on Mechanical Properties of Carbon Fiber Reinforced Plastics[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 300-305. doi: 10.13433/j.cnki.1003-8728.20200320

铣削参数对碳纤维复合材料力学性能影响研究

doi: 10.13433/j.cnki.1003-8728.20200320
基金项目: 

国家科技重大专项项目 2017-Ⅶ-0015-0111

南京航空航天大学研究生创新基地(实验室)开放基金项目 kfjj20190507

校企合作项目 COMAC-SFGS-2018-2921

详细信息
    作者简介:

    龚佑宏(1984-), 高级工程师, 硕士, 研究方向为复合材料机械加工, 复合材料自动化工艺装备及应用, 185644715@qq.com

    通讯作者:

    陈燕, 教授, 博士生导师, ninaych@nuaa.edu.cn

  • 中图分类号: TH16

Study on Influence of Milling Parameters on Mechanical Properties of Carbon Fiber Reinforced Plastics

  • 摘要: 为研究铣削参数对复合材料力学性能的影响, 开展了以主轴转速与进给量2个变量为试验因素的全因素铣削加工试验, 并统计分析了不同加工参数下复合材料试样的拉伸性能及压缩性能。试验结果表明: 复合材料的拉伸性能和铣削加工参数无关, 而压缩性能随着主轴转速的提高而降低, 与进给量无关。同时, 不同加工条件下的拉伸及压缩测试断口形貌表明, 过高的主轴转速会造成加工区域基体的热损伤, 分析认为这是造成材料压缩性能下降的原因。
  • 图  1  装夹示意图

    图  2  万能试验机及夹具

    图  3  拉伸性能测试失效试样

    图  4  拉伸强度测试结果

    图  5  拉伸强度分布计数图

    图  6  拉伸断口图

    图  7  压缩性能测试失效试样

    图  8  压缩强度测试统计结果

    图  9  高转速加工样件压缩断口图

    图  10  低转速加工样件压缩断口图

    表  1  加工参数

    水平 因素
    主轴转速n/(r·min-1) 每转进给f/(mm·r-1)
    1 3 000 0.09
    2 5 000 0.12
    3 7 000 0.15
    4 9 000 0.18
    5 11 000 0.21
    下载: 导出CSV

    表  2  拉伸强度方差分析

    来源 平方和 自由度 均方 F P
    修正模型 32 230.42 24.00 1 342.93 2.43 < 0.01
    转速 5 098.98 4.00 1 274.75 2.31 0.06
    进给 2 028.91 4.00 207.23 0.92 0.46
    误差 55 160.72 100.00 551.61
    总和 58 918 067.25 125.00
    R2=0.333 Adj R2=0.142
    下载: 导出CSV

    表  3  压缩强度方差分析

    来源 平方和 自由度 均方 F P
    修正模型 32 230.42 24.00 1 342.93 2.43 < 0.01
    转速 39 554.83 4.00 9 888.71 5.11 < 0.01
    进给 5 861.52 4.00 1 465.38 0.76 0.56
    误差 162 686.25 84.00 1 936.74
    总和 34 325 450.00 109.00
    R2=0.369 Adj R2=0.317
    下载: 导出CSV
  • [1] 刘卫平. 民用飞机复合材料结构制造技术[M]. 上海: 上海交通大学出版社, 2016

    LIU W P. Manufacturing technology for composite structures of civil aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2016 (in Chinese)
    [2] WAN M, LI S E, YUAN H, et al. Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): a review[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 34-55 doi: 10.1016/j.compositesa.2018.11.003
    [3] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12 doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.001
    [4] ALTIN KARATAŞ M, GÖKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318-326 doi: 10.1016/j.dt.2018.02.001
    [5] TETI R. Machining of composite materials[J]. CIRP Annals, 2002, 51(2): 611-634 doi: 10.1016/S0007-8506(07)61703-X
    [6] 庄茁, 蒋持平. 工程断裂与损伤[M]. 北京: 机械工业出版社, 2004

    ZHUANG Z, JIANG C P. Engineering fracture and damage[M]. Beijing: China Machine Press, 2004 (in Chinese)
    [7] 李皓. 基于能量法CFRP切削机理与加工表面质量表征方法研究[D]. 天津: 天津大学, 2016

    LI H. Study on energy based cutting mechanism and surface quality evaluation method of CFRP machining[D]. Tianjin: Tianjin University, 2016 (in Chinese)
    [8] MORKAVUK S, KÖKLV U, BAǦCI M, et al. Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: a comparative study[J]. Composites Part B: Engineering, 2018, 147: 1-11 doi: 10.1016/j.compositesb.2018.04.024
    [9] GHIDOSSI P, EL MANSORI M, PIERRON F. Edge machining effects on the failure of polymer matrix composite coupons[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(7-8): 989-999 doi: 10.1016/j.compositesa.2004.01.015
    [10] ERIKSEN E. The influence of surface roughness on the mechanical strength properties of machined short-fibre-reinforced thermoplastics[J]. Composites Science and Technology, 2000, 60(1): 107-113 doi: 10.1016/S0266-3538(99)00102-5
    [11] HADDAD M, ZITOUNE R, BOUGHERARA H, et al. Study of trimming damages of CFRP structures in function of the machining processes and their impact on the mechanical behavior[J]. Composites Part B: Engineering, 2014, 57: 136-143 doi: 10.1016/j.compositesb.2013.09.051
    [12] HEJJAJI A, ZITOUNE R, CROUZEIX L, et al. Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior[J]. Wear, 2017, 376-377: 1356-1364 doi: 10.1016/j.wear.2017.02.024
    [13] SQUIRES C A, NETTING K H, CHAMBERS A R. Understanding the factors affecting the compressive testing of unidirectional carbon fibre composites[J]. Composites Part B: Engineering, 2007, 38(4): 481-487 doi: 10.1016/j.compositesb.2006.08.002
    [14] Standard test method for tensile properties of polymer matrix composite materials[Z].
    [15] Standard test method for compressive properties of polymer matrix composite materials using a Combined Loading Compression (CLC) Test Fixture[Z].
    [16] 徐才华. 碳纤维增强树脂复合材料制备及其性能研究[D]. 郑州: 郑州大学, 2014

    XU C H. Preparation and properties research on composites made of resins reinforced by carbon fiber[D]. Zhengzhou: Zhengzhou University, 2014 (in Chinese)
    [17] 杨序纲, 吴琪琳. 复合材料的界面行为[M]. 北京: 化学工业出版社, 2019

    YANG X G, WU Q L. Interfacial behaviours in composites[M]. Beijing: Chemical Industry Press, 2019 (in Chinese)
    [18] 付成龙, 陈利, 张雅璐. 几何尺寸与温度对CFRP筋材力学性能的影响[J]. 玻璃钢/复合材料, 2016(5): 74-79 doi: 10.3969/j.issn.1003-0999.2016.05.013

    FU C L, CHEN L, ZHANG Y L. Evaluation of geometrical size and temperature effect on the mechanical behavior of CFRP bars[J]. Fiber Reinforced Plastics/Composites, 2016(5): 74-79 (in Chinese) doi: 10.3969/j.issn.1003-0999.2016.05.013
    [19] HADDAD M, ZITOUNE R, EYMA F, et al. Study of the surface defects and dust generated during trimming of CFRP: Influence of tool geometry, machining parameters and cutting speed range[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 142-154 doi: 10.1016/j.compositesa.2014.07.005
    [20] PRABHAKAR P, WAAS A M. Micromechanical modeling to determine the compressive strength and failure mode interaction of multidirectional laminates[J]. Composites Part A: Applied Science and Manufacturing, 2013, 50: 11-21 doi: 10.1016/j.compositesa.2013.03.006
    [21] 章力. 基于有限元方法的复合材料压缩强度分散性研究[D]. 长沙: 国防科学技术大学, 2016

    ZHANG L. Research on dispersity of compressive strength of FRP based on finite element method[D]. Changsha: National University of Defense Technology, 2016 (in Chinese)
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  23
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回