留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄壁零件铣削的磁流变弹性体吸振器的理论分析及试验

杨清艳 LIWeihua

杨清艳, LIWeihua. 薄壁零件铣削的磁流变弹性体吸振器的理论分析及试验[J]. 机械科学与技术, 2022, 41(2): 263-269. doi: 10.13433/j.cnki.1003-8728.20200319
引用本文: 杨清艳, LIWeihua. 薄壁零件铣削的磁流变弹性体吸振器的理论分析及试验[J]. 机械科学与技术, 2022, 41(2): 263-269. doi: 10.13433/j.cnki.1003-8728.20200319
YANG Qingyan, LI Weihua. Theoretical Analysis and Experiment of Magneto Rheological Elastomer Vibration Absorber for Milling Thin-walled Workpiece[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 263-269. doi: 10.13433/j.cnki.1003-8728.20200319
Citation: YANG Qingyan, LI Weihua. Theoretical Analysis and Experiment of Magneto Rheological Elastomer Vibration Absorber for Milling Thin-walled Workpiece[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 263-269. doi: 10.13433/j.cnki.1003-8728.20200319

薄壁零件铣削的磁流变弹性体吸振器的理论分析及试验

doi: 10.13433/j.cnki.1003-8728.20200319
基金项目: 

安徽省高校基金重点项目 KJ2019A0796

安徽建筑大学启动基金项目 JZ192039

详细信息
    作者简介:

    杨清艳(1987-), 讲师, 博士研究生, 研究方向为数控加工技术, 机械振动研究, qingyanyang1987@163.com

  • 中图分类号: TH122

Theoretical Analysis and Experiment of Magneto Rheological Elastomer Vibration Absorber for Milling Thin-walled Workpiece

  • 摘要: 薄壁件由于刚性差,在铣削过程中难免会出现各种扰动,从而容易发生颤振,严重影响了加工零件的精度和表面质量。为了解决该问题,考虑到同种材料不同尺寸的工件,或者不同材料的工件其固有频率不同,提出了在加工过程采用变频率的磁流变吸振器(Magneto rheological elastomer (MRE) absorber)的方法。文中详细介绍了磁流变吸振器的设计过程,并对吸振器的在不同电流下的频率进行测试,分析了磁流变吸振器在铣削加工中使用性能,对比铣削系统的稳定性叶瓣图及抗干扰的能力。结果表明所设计的变频率磁流变吸振器对于防止切削颤振是可行的,并且可以通过改变通电电流将其应用于不同材料的工件,不同尺寸的工件。
  • 图  1  薄壁零件铣削颤振模型

    图  2  不同厚度的工件前6阶振动频率

    图  3  加磁流变吸振器后铣削薄壁零件的颤振模型

    图  4  磁流变吸振器的设计构思图

    图  5  MRE吸振器具体设计参数

    图  6  MRE吸振器的多切面磁通密度图

    图  7  MRE的制备过程

    图  8  MRE吸振器组装过程

    图  9  测试MRE吸振器传递曲线的试验平台

    图  10  试验结果

    图  11  铣削叶瓣图

    图  12  铣削系统对干扰的响应

    表  1  低碳钢工件频率与厚度关系

    厚度/mm 3 5 7 9
    1阶自由模态频率/Hz 98.958 164.76 230.37 295.73
    下载: 导出CSV

    表  2  MRE吸振器频率-电流关系

    电流/A 频率/Hz 电流/A 频率/Hz
    0.2 90.13 1.2 182.55
    0.4 98.19 1.4 226.85
    0.6 112.08 1.6 259.06
    0.8 130.2 1.8 299.33
    1.0 146.31
    下载: 导出CSV
  • [1] BALACHANDRAN B, ZHAO M X. A mechanics based model for study of dynamics of milling operations[J]. Meccanica, 2000, 35(2): 89-109 doi: 10.1023/A:1004887301926
    [2] INSPERGER T, MUÑOA J, ZATARAIN M, et al. Unstable islands in the stability chart of milling processes due to the helix angle[C]//Proceedings of the CIRP-2nd International Conference on High Performance Cutting. Vancouver, Canada, 2006: 12-13
    [3] ZATARAIN M, MUÑOA J, PEIGNÉ G, et al. Analysis of the influence of mill helix angle on chatter stability[J]. CIRP Annals, 2006, 55(1): 365-368 doi: 10.1016/S0007-8506(07)60436-3
    [4] SZALAI R B, STÉPÁN G. Lobes and Lenses in the stability chart of interrupted turning[J]. Journal of Computational and Nonlinear Dynamics, 2006, 1(3): 205-211 doi: 10.1115/1.2198216
    [5] OLGAC N, SIPAHI R. Dynamics and stability of variable-pitch milling[J]. Journal of Vibration and Control, 2007, 13(7): 1031-1043 doi: 10.1177/1077546307078754
    [6] SIMS N D, MANN B, HUYANAN S. Analytical prediction of chatter stability for variable pitch and variable helix milling tools[J]. Journal of Sound and Vibration, 2008, 317(3-5): 664-686 doi: 10.1016/j.jsv.2008.03.045
    [7] MUNOA J, BEUDAERT X, DOMBOVARI Z, et al. Chatter suppression techniques in metal cutting[J]. CIRP Annals, 2016, 65(2): 785-808 doi: 10.1016/j.cirp.2016.06.004
    [8] WANG J H, LEE K N. Suppression of chatter vibration of a CNC machine Centre-an example[J]. Mechanical Systems and Signal Processing, 1996, 10(5): 551-560 doi: 10.1006/mssp.1996.0038
    [9] SEMERCIGIL S, CHEN L A. Preliminary computations for chatter control in end milling[J]. Journal of Sound and Vibration, 2002, 249(3): 622-633 doi: 10.1006/jsvi.2001.3740
    [10] KIM N H, WON D, ZIEGERT J C. Numerical analysis and parameter study of a mechanical damper for use in long slender endmills[J]. International Journal of Machine Tools and Manufacture, 2006, 46(5): 500-507 doi: 10.1016/j.ijmachtools.2005.07.004
    [11] MIGUÉLEZ M H, RUBIO L, LOYA J A, et al. Improvement of chatter stability in boring operations with passive vibration absorbers[J]. International Journal of Mechanical Sciences, 2010, 52(10): 1376-1384 doi: 10.1016/j.ijmecsci.2010.07.003
    [12] TUNÇ L T, BUDAK E. Effect of cutting conditions and tool geometry on process damping in machining[J]. International Journal of Machine Tools and Manufacture, 2012, 57: 10-19 doi: 10.1016/j.ijmachtools.2012.01.009
    [13] KOLLURU K, AXINTE D, BECKER A. A solution for minimising vibrations in milling of thin walled casings by applying dampers to workpiece surface[J]. CIRP Annals, 2013, 62(1): 415-418 doi: 10.1016/j.cirp.2013.03.136
    [14] YANG Y Q, XU D D, LIU Q. Milling vibration attenuation by eddy current damping[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(1-4): 445-454 doi: 10.1007/s00170-015-7239-3
    [15] ZHANG Z, LI H G, LIU X B, et al. Chatter mitigation for the milling of thin-walled workpiece[J]. International Journal of Mechanical Sciences, 2018, 138-139: 262-271 doi: 10.1016/j.ijmecsci.2018.02.014
    [16] ZHANG Z, LI H G, MENG G, et al. Milling chatter suppression in viscous fluid: a feasibility study[J]. International Journal of Machine Tools and Manufacture, 2017, 120: 20-26 doi: 10.1016/j.ijmachtools.2017.02.005
    [17] SUN S S, YANG J, YILDIRIM T, et al. Development of a nonlinear adaptive absorber based on magneto rheological elastomer[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(2): 194-204 doi: 10.1177/1045389X17733053
    [18] GONG X L, FAN Y C, XUAN S H, et al. Control of the damping properties of magnetorheological elastomers by using polycaprolactone as a temperature-controlling component[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6395-6403
    [19] 龚兴龙, 李剑锋, 张先舟, 等. 磁流变弹性体力学性能测量系统的建立[J]. 功能材料, 2006, 37(5): 733-735 doi: 10.3321/j.issn:1001-9731.2006.05.017

    GONG X L, LI J F, ZHANG X Z, et al. Development of testing system for properties of magnetorheological elastomers[J]. Journal of Functional Materials, 2006, 37(5): 733-735 (in Chinese) doi: 10.3321/j.issn:1001-9731.2006.05.017
    [20] GU X Y, LI Y C, LI J C. Investigations on response time of magnetorheological elastomer isolator for real-time control implementation[J]. Smart Materials and Structures, 2016, 25(11): 11LT04 doi: 10.1088/0964-1726/25/11/11LT04
    [21] YANG Z R, QIN C Y, RAO Z S, et al. Design and analyses of axial semi-active dynamic vibration absorbers based on magnetorheological elastomers[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(17): 2199-2207 doi: 10.1177/1045389X13519002
    [22] SONG Q H, AI X, TANG W X. Prediction of simultaneous dynamic stability limit of time-variable parameters system in thin-walled workpiece high-speed milling processes[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(9): 883-889
    [23] BUDAK E, ALTINTASŞ Y. Analytical prediction of chatter stability in milling-part Ⅱ: application of the general formulation to common milling systems[J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(1): 31-36 doi: 10.1115/1.2801318
    [24] DENG H X, GONG X L, WANG L H. Development of an adaptive tuned vibration absorber with magnetorheological elastomer[J]. Smart Materials and Structures, 2006, 15(5): N111-N116 doi: 10.1088/0964-1726/15/5/N02
    [25] SUN S S, CHEN Y, YANG J, et al. The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode[J]. Smart Materials and Structures, 2014, 23(7): 075009 doi: 10.1088/0964-1726/23/7/075009
    [26] SUN S S, YANG J, LI W H, et al. Development of an MRE adaptive tuned vibration absorber with self-sensing capability[J]. Smart Materials and Structures, 2015, 24(9): 095012 doi: 10.1088/0964-1726/24/9/095012
    [27] ZHANG X Z, LI W H. Adaptive tuned dynamic vibration absorbers working with MR elastomers[J]. Smart Structures and Systems, 2009, 5(5): 517-529 doi: 10.12989/sss.2009.5.5.517
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  54
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-07
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回