留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合金钢40CrNiMoA高速外圆磨削比能预测研究

刘伟 石新宇 李希晨 唐都波 刘顺

刘伟, 石新宇, 李希晨, 唐都波, 刘顺. 合金钢40CrNiMoA高速外圆磨削比能预测研究[J]. 机械科学与技术, 2022, 41(1): 98-103. doi: 10.13433/j.cnki.1003-8728.20200303
引用本文: 刘伟, 石新宇, 李希晨, 唐都波, 刘顺. 合金钢40CrNiMoA高速外圆磨削比能预测研究[J]. 机械科学与技术, 2022, 41(1): 98-103. doi: 10.13433/j.cnki.1003-8728.20200303
LIU Wei, SHI Xinyu, LI Xichen, TANG Dubo, LIU Shun. Prediction of Specific Energy in High Speed Cylindrical Grinding of 40CrNiMoA[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(1): 98-103. doi: 10.13433/j.cnki.1003-8728.20200303
Citation: LIU Wei, SHI Xinyu, LI Xichen, TANG Dubo, LIU Shun. Prediction of Specific Energy in High Speed Cylindrical Grinding of 40CrNiMoA[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(1): 98-103. doi: 10.13433/j.cnki.1003-8728.20200303

合金钢40CrNiMoA高速外圆磨削比能预测研究

doi: 10.13433/j.cnki.1003-8728.20200303
基金项目: 

湖南省自然科学基金项目 2020JJ5178

湖南省教育厅科学研究一般项目 15C0544

湖南省电磁装备设计与制造重点实验室开放基金项目 DC201901

详细信息
    作者简介:

    刘伟(1986-), 副教授,硕士生导师,博士, 研究方向为高效精密智能磨削、磨抛机器人, lw1986tiger@163.com

  • 中图分类号: TG580

Prediction of Specific Energy in High Speed Cylindrical Grinding of 40CrNiMoA

  • 摘要: 采用正交试验法研究干磨和湿磨方式下砂轮线速度、工件转速、磨削深度对合金钢40CrNiMoA高速外圆磨削比能的影响,并建立基于BP神经网络的磨削比能预测模型,最后对预测结果进行验证。结果表明:合金钢40CrNiMoA高速外圆磨削比能随砂轮线速度增大呈现先增加后减小的趋势,随工件转速、磨削深度的增大而减小,工件转速对磨削比能的影响程度最大;湿磨方式的磨削比能比干磨方式的小。在试验工艺参数范围内,当砂轮线速度为60 m/s、工件转速为125 r/min、磨削深度为40 μm时,磨削比能最小;预测模型的预测值与试验结果的绝对误差小于10%,表明BP神经网络预测模型是有效的。
  • 图  1  机床加工过程功率图

    图  2  磨粒未变形切屑厚度示意图

    图  3  40CrNiMoA工件

    图  4  高速外圆磨削试验系统

    图  5  工艺参数对磨削

    图  6  磨削比能BP神经网络预测模型结构图

    表  1  正交试验因素水平表

    因素 参数/单位 水平
    1 2 3 4
    A vs/(m·s-1) 60 90 120 150
    B vw/(r·min-1) 50 75 100 125
    C ap/μm 10 20 30 40
    下载: 导出CSV

    表  2  正交试验方案

    编号 因素
    A B C
    1 1 1 1
    2 1 2 2
    3 1 3 3
    4 1 4 4
    5 2 1 2
    6 2 2 1
    7 2 3 4
    8 2 4 3
    9 3 1 3
    10 3 2 4
    11 3 3 1
    12 3 4 2
    13 4 1 4
    14 4 2 3
    15 4 3 2
    16 4 4 1
    下载: 导出CSV

    表  3  高速外圆磨削正交试验结果

    编号 干磨 湿磨
    PE/W PT/W SEG/(J·mm-3) PE/W PT/W SEG/(J·mm-3)
    1 5 462.423 6 014.520 15.417 8 098.346 8 412.895 8.784
    2 5 530.664 6 711.263 10.989 7961.715 8 536.396 5.349
    3 5 714.640 7 286.054 7.314 8 112.038 8 893.785 3.638
    4 5 614.028 7 515.663 5.310 10 367.266 11 541.759 3.280
    5 5 750.739 6 882.819 15.807 7 985.829 8 720.928 10.264
    6 5 665.352 6 558.859 16.634 8 439.756 9 001.265 10.453
    7 5 609.416 7 826.232 7.738 9 340.867 10 628.412 4.494
    8 6 212.147 7 890.667 6.250 8 284.150 9 264.854 3.651
    9 6 074.769 8 044.098 18.331 8 667.361 9 993.287 12.342
    10 6 020.220 8 438.991 11.257 9 554.067 11 401.879 8.600
    11 5 778.356 6 867.941 15.213 9 209.878 9 939.591 10.189
    12 5 705.449 6 934.444 6.864 8 740.058 9 712.387 5.430
    13 6 945.482 9 064.753 14.795 9 582.218 11 115.396 10.703
    14 6 845.512 8 455.027 9.988 10 012.609 11 259.656 7.739
    15 6 729.604 8 232.459 10.492 9 689.972 10 747.351 7.382
    16 6 040.234 7 088.095 11.705 9 880.640 10 657.807 8.681
    下载: 导出CSV

    表  4  干磨正交试验极差分析

    因素 k1 k2 k3 k4 R
    A 9.758 11.607 12.916 11.745 3.159
    B 16.088 12.217 10.189 7.532 8.555
    C 14.742 11.038 10.471 9.775 4.967
    主次顺序 vw>ap>vs
    下载: 导出CSV

    表  5  湿磨正交试验极差分析

    因素 k1 k2 k3 k4 R
    A 5.263 7.216 9.145 8.626 3.878
    B 10.523 8.035 6.426 5.261 5.263
    C 9.527 7.106 6.843 6.769 2.758
    主次顺序 vw>vs>ap
    下载: 导出CSV

    表  6  traincgf函数的相关训练参数

    训练参数 取值
    最大训练次数
    5 000
    学习率
    0.000 1
    显示训练迭代过程 25
    训练要求精度
    0.000 01
    下载: 导出CSV

    表  7  干磨磨削比能预测值与试验值对比

    编号 因素 预测值/(J·mm-3) 试验值/(J·mm-3) 绝对误差/%
    A B C
    1 150 50 10 24.896 22.738 9.491
    2 120 50 10 24.509 22.841 7.303
    3 60 125 10 13.171 12.612 4.432
    下载: 导出CSV

    表  8  湿磨磨削比能预测值与试验值对比

    编号 因素 预测值/(J·mm-3) 试验值/(J·mm-3) 绝对误差/%
    A B C
    1 150 50 10 14.679 14.341 2.357
    2 120 50 10 13.355 14.125 5.451
    3 60 125 10 6.342 6.572 3.500
    下载: 导出CSV
  • [1] 何加群. 不忘建设世界轴承强国的初心——《全国轴承行业"十三五"发展规划》解读[J]. 轴承, 2017(5): 54-66 https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201705016.htm

    HE J Q. Do not forget the original intention to construct world bearing power-interpretation of '13th five-year plan of China bearing industry'[J]. Bearing, 2017(5): 54-66 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201705016.htm
    [2] 葛泉江, 张兴洪, 马欣新, 等. M50高温轴承钢表面TiN涂层与镀银层对磨的摩擦特性[J]. 航空制造技术, 2017(23-24): 54-58 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ2017Z2012.htm

    GE Q J, ZHANG X H, MA X X, et al. Tribological properties of TiN coated M50 steel for high temperature bearing against silver coatings[J]. Aeronautical Manufacturing Technology, 2017(23-24): 54-58 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ2017Z2012.htm
    [3] 孙立才, 师歌, 李凌鑫, 等. 航空轴承钢制保持架的加工工艺[J]. 轴承, 2016(3): 23-25 doi: 10.3969/j.issn.1000-3762.2016.03.007

    SUN L C, SHI G, LI L X, et al. Machining technology for steel cages of aviation bearings[J]. Bearing, 2016(3): 23-25 (in Chinese) doi: 10.3969/j.issn.1000-3762.2016.03.007
    [4] 尹晖, 邓朝晖, 张华, 等. 典型机床关键零部件切削/磨削比能数据库系统研发[J]. 金刚石与磨料磨具工程, 2017, 37(4): 73-78, 85 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM201704016.htm

    YIN H, DENG Z H, ZHANG H, et al. Research and development of cutting or grinding specific energy database system for key components of typical machine tools[J]. Diamond & Abrasives Engineering, 2017, 37(4): 73-78, 85 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM201704016.htm
    [5] 严灿. 典型机床加工能耗分析与切削磨削比能预测研究[D]. 湘潭: 湖南科技大学, 2016

    YAN C. Research on the machining energy analysis and prediction of cutting/grinding specific energy consumption of the typical CNC machine tool[D]. Xiangtan: Hunan University of Science and Technology, 2016 (in Chinese)
    [6] 周振新. 难加工材料的高速外圆磨削仿真与工程实验研究[D]. 上海: 上东华大学, 2010

    ZHOU Z X. Simulational and experimental research on high speed external cylindrical grinding of difficult-to-cut materials[D]. Shanghai: Donghua University, 2010 (in Chinese)
    [7] 张强, 庞静珠, 李蓓智, 等. 外圆磨削力测试方法及高速磨削特性研究[J]. 组合机床与自动化加工技术, 2012(9): 9-12 doi: 10.3969/j.issn.1001-2265.2012.09.003

    ZHANG Q, PANG J Z, LI B Z, et al. Study on test methods of external cylindrical grinding force and high-speed grinding characteristics[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2012(9): 9-12 (in Chinese) doi: 10.3969/j.issn.1001-2265.2012.09.003
    [8] 詹友基, 田笑, 许永超, 等. 基于超细硬质合金磨削过程的机床能耗研究[J]. 金刚石与磨料磨具工程, 2020, 40(2): 61-66 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM202002012.htm

    ZHAN Y J, TIAN X, XU Y C, et al. Analysis on machine tool energy consumption based on ultra-fine cemented carbide grinding process[J]. Diamond & Abrasives Engineering, 2020, 40(2): 61-66 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM202002012.htm
    [9] ZHAN Y J, TIAN X, XU Y C, et al. Study on the specific grinding energy of cemented carbide (YG8) grinding with a vitrified diamond wheel in high speed regime[J]. International Journal of Abrasive Technology, 2019, 9(4): 286-302 doi: 10.1504/IJAT.2019.106675
    [10] MONICI R D, BIANCHI E C, CATAI R E, et al. Analysis of the different forms of application and types of cutting fluid used in plunge cylindrical grinding using conventional and superabrasive CBN grinding wheels[J]. International Journal of Machine Tools and Manufacture, 2006, 46(2): 122-131 doi: 10.1016/j.ijmachtools.2005.05.009
    [11] ZAHEDI A, TAWAKOLI T, AKBARI J. Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics[J]. International Journal of Machine Tools and Manufacture, 2015, 90: 16-28 doi: 10.1016/j.ijmachtools.2014.12.002
    [12] 李涛, 孔露露, 张洪潮, 等. 典型切削机床能耗模型的研究现状及发展趋势[J]. 机械工程学报, 2014, 50(7): 102-111 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201407014.htm

    LI T, KONG L L, ZHANG H C, et al. Recent research and development of typical cutting machine tool's energy consumption model[J]. Journal of Mechanical Engineering, 2014, 50(7): 102-111 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201407014.htm
    [13] 任敬心, 华定安. 磨削原理[M]. 北京: 北京电子工业出版社, 2011

    REN J X, HUA D A. Grinding principle[M]. Beijing: Beijing Electronic Industry Press, 2011 (in Chinese)
    [14] 刘伟, 商圆圆, 邓朝晖, 等. 基于响应曲面法的轴承钢GCr15高速外圆磨削参数优化[J]. 中国机械工程, 2019, 30(23): 2829-2834 doi: 10.3969/j.issn.1004-132X.2019.23.008

    LIU W, SHANG Y Y, DENG Z H, et al. Parameter optimization of high speed cylindrical grinding for bearing steel GCr15 based on response surface method[J]. China Mechanical Engineering, 2019, 30(23): 2829-2834 (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.23.008
    [15] 赵恒华, 孙顺利, 高兴军, 等. 超高速磨削的比磨削能研究[J]. 中国机械工程, 2006, 17(5): 453-456 doi: 10.3321/j.issn:1004-132X.2006.05.004

    ZHAO H H, SUN S L, GAO X J, et al. Study on specific grinding energy of ultra high speed grinding[J]. China Mechanical Engineering, 2006, 17(5): 453-456 (in Chinese) doi: 10.3321/j.issn:1004-132X.2006.05.004
    [16] 宫运启. 基于神经网络的机械加工工序能耗预测[J]. 计算机工程与应用, 2012, 48(21): 235-239 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201221053.htm

    GONG Y Q. Energy consumption prediction in machining procedure based on neural network[J]. Computer Engineering and Applications, 2012, 48(21): 235-239 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201221053.htm
    [17] 陈雯柏. 人工神经网络原理与实践[M]. 西安: 西安电子科技大学出版社, 2016

    CHEN W B. Principle and practice of artificial neural network[M]. Xi'an: Xidian University Press, 2016 (in Chinese)
    [18] 仝卫国, 李敏霞, 张一可. 深度学习优化算法研究[J]. 计算机科学, 2018, 45(S2): 155-159 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2018S2030.htm

    TONG W G, LI M X, ZHANG Y K. Research on optimization algorithm of deep learning[J]. Computer Science, 2018, 45(S2): 155-159 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2018S2030.htm
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  48
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回