留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向超声振动辅助铣削力的建模与实验研究

魏学涛 岳彩旭 刘献礼 严复钢 魏士亮 StevenY. Liang

魏学涛, 岳彩旭, 刘献礼, 严复钢, 魏士亮, StevenY. Liang. 轴向超声振动辅助铣削力的建模与实验研究[J]. 机械科学与技术, 2021, 40(12): 1820-1828. doi: 10.13433/j.cnki.1003-8728.20200288
引用本文: 魏学涛, 岳彩旭, 刘献礼, 严复钢, 魏士亮, StevenY. Liang. 轴向超声振动辅助铣削力的建模与实验研究[J]. 机械科学与技术, 2021, 40(12): 1820-1828. doi: 10.13433/j.cnki.1003-8728.20200288
WEI Xuetao, YUE Caixu, LIU Xianli, YAN Fugang, WEI Shiliang, Steven Y. Liang. Modeling and Experimental Study on Axial Ultrasonic Vibration-Assisted Milling Force[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(12): 1820-1828. doi: 10.13433/j.cnki.1003-8728.20200288
Citation: WEI Xuetao, YUE Caixu, LIU Xianli, YAN Fugang, WEI Shiliang, Steven Y. Liang. Modeling and Experimental Study on Axial Ultrasonic Vibration-Assisted Milling Force[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(12): 1820-1828. doi: 10.13433/j.cnki.1003-8728.20200288

轴向超声振动辅助铣削力的建模与实验研究

doi: 10.13433/j.cnki.1003-8728.20200288
基金项目: 

国家自然科学基金国际(地区)合作与交流重点项目 51720105009

黑龙江省自然科学基金优秀青年项目 YQ2019E029

详细信息
    作者简介:

    魏学涛(1995-), 硕士研究生, 研究方向为超声振动辅助加工, 759361080@qq.com

    通讯作者:

    岳彩旭, 教授, 博士生导师, yuecaixu@163.com

  • 中图分类号: TG663

Modeling and Experimental Study on Axial Ultrasonic Vibration-Assisted Milling Force

  • 摘要: 轴向超声振动辅助铣削工艺是近年来铣削领域的最新进展之一, 目前对于轴向超声振动铣削力建模的研究相对较少。针对这一问题, 提出了一个考虑轴向振动的超声铣削力建模方法。根据空间中刀尖运动轨迹的坐标, 建立了准确的瞬时切厚模型, 得到不同切削角度下切屑形成力和摩擦力模型。将铣削力与未变形的切屑截面面积建立函数关系, 考虑了瞬时未变形切厚模型以及瞬时切深模型, 得到了轴向冲击力模型。结合切屑形成力模型、摩擦力模型和轴向冲击力模型得到轴向超声振动辅助铣削力模型。研究结果表明: 预测的铣削力变化趋向与实验测得的铣削力变化趋向吻合, 最大峰值力的误差范围在7.53%~17.35%之间。本文结果将为超声振动辅助铣削工艺的优化研究提供理论基础。
  • 图  1  超声振动辅助铣削示意图

    图  2  轴向超声振动微铣削双刃运动轨迹图

    图  3  超声振动辅助铣削示意图

    图  4  超声振动铣削瞬时深度

    图  5  瞬时切削厚度

    图  6  Merchant模型

    图  7  实验平台

    图  8  预测值与实验值波形对比图

    图  9  实验与预测铣削力峰值对比

    表  1  刀具参数

    参数 参数值
    材料 硬质合金
    螺旋角 38°
    前角
    后角
    齿间角 90°
    下载: 导出CSV

    表  2  实验加工参数

    参数 参数值
    切削速度/(m·min-1) 30, 40, 50, 65
    进给速度/(mm·min-1) 400, 600
    铣削深度/mm 1.2, 6, 10
    铣削宽度/mm 0.5
    下载: 导出CSV
  • [1] CHEN W Q, HUO D H, SHI Y L, et al. State-of-the-art review on vibration-assisted milling: principle, system design, and application[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5-8): 2033-2049 doi: 10.1007/s00170-018-2073-z
    [2] 张德远, 刘静. 飞机紧固孔超声振动精密加工技术研究[J]. 中国机械工程, 2012, 23(4): 421-424 doi: 10.3969/j.issn.1004-132X.2012.04.010

    ZHANG D Y, LIU J. Study on ultrasonic vibration precision machining technology of aircraft fastener holes[J]. China Mechanical Engineering, 2012, 23(4): 421-424 (in Chinese) doi: 10.3969/j.issn.1004-132X.2012.04.010
    [3] 武民. 不同振动方式下的钛合金振动辅助铣削工艺效果研究[D]. 新乡: 河南科技学院, 2018

    WU M. Influence of vibration modes on process effect in vibration assisted milling of titanium alloy[D]. Xinxiang: Henan Institute of Science and Technology, 2018 (in Chinese)
    [4] 张德远, 刘逸航, 耿大喜, 等. 超声加工技术的研究进展[J]. 电加工与模具, 2019(5): 1-10, 19 doi: 10.3969/j.issn.1009-279X.2019.05.001

    ZHANG D Y, LIU Y H, GENG D X, et al. The research progress of ultrasonic machining technology[J]. Electromachining & Mould, 2019(5): 1-10, 19 (in Chinese) doi: 10.3969/j.issn.1009-279X.2019.05.001
    [5] HSU C Y, TSAO C C, HUANG C H, et al. A study on ultrasonic vibration milling of inconel 718[J]. Key Engineering Materials, 2009, 419-420: 373-377 doi: 10.4028/www.scientific.net/KEM.419-420.373
    [6] IBRAHIM M R, RAFAI N H, RAHIM E A, et al. A study of tool motion in 2 dimensional ultrasonic assisted micro-milling[J]. Applied Mechanics and Materials, 2015, 815: 328-331 doi: 10.4028/www.scientific.net/AMM.815.328
    [7] ZARCHI M M A, RAZFAR M R, ABDULLAH A. Investigation of the effect of cutting speed and vibration amplitude on cutting forces in ultrasonic-assisted milling[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(7): 1185-1191 doi: 10.1177/0954405412439666
    [8] HALIM N F H A, ASCROFT H, BARNES S. Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon Fibre reinforced plastic (CFRP)[J]. Procedia Engineering, 2017, 184: 185-191 doi: 10.1016/j.proeng.2017.04.084
    [9] 张明亮, 姜兴刚, 刘佳佳, 等. 钛合金超声椭圆振动铣削参数对切削力的影响[J]. 电加工与模具, 2017(6): 39-41 doi: 10.3969/j.issn.1009-279X.2017.06.010

    ZHANG M L, JIANG X G, LIU J J, et al. Influence of ultrasonic elliptical vibration milling parameters with titanium alloy on the cutting force[J]. Electromachining & Mould, 2017(6): 39-41 (in Chinese) doi: 10.3969/j.issn.1009-279X.2017.06.010
    [10] 高泽, 张德远, 李哲, 等. 高速超声椭圆振动铣削腹板表面质量研究[J]. 机械工程学报, 2019, 55(7): 249-256 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201907035.htm

    GAO Z, ZHANG D Y, LI Z, et al. Research on surface quality of titanium alloy webs via high-speed ultrasonic elliptical vibration milling[J]. Journal of Mechanical Engineering, 2019, 55(7): 249-256 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201907035.htm
    [11] 倪陈兵, 朱立达, 宁晋生, 等. 超声振动辅助铣削钛合金铣削力信号及切屑特征研究[J]. 机械工程学报, 2019, 55(7): 207-216 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201907029.htm

    NI C B, ZHU L D, NING J S, et al. Research on the characteristics of cutting force signal and chip in ultrasonic vibration-assisted milling of titanium alloys[J]. Journal of Mechanical Engineering, 2019, 55(7): 207-216 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201907029.htm
    [12] 王明海, 李世永, 郑耀辉, 等. 超声振动铣削加工参数对切削力的影响[J]. 中国机械工程, 2014, 25(15): 2024-2029 doi: 10.3969/j.issn.1004-132X.2014.15.008

    WANG M H, LI S Y, ZHENG Y H, et al. Effects of processing parameters on cutting force in ultrasonic vibration milling[J]. China Mechanical Engineering, 2014, 25(15): 2024-2029 (in Chinese) doi: 10.3969/j.issn.1004-132X.2014.15.008
    [13] ELHAMI S, RAZFAR M R, FARAHNAKIAN M. Analytical, numerical and experimental study of cutting force during thermally enhanced ultrasonic assisted milling of hardened AISI 4140[J]. International Journal of Mechanical Sciences, 2015, 103: 158-171 doi: 10.1016/j.ijmecsci.2015.09.007
    [14] ABOOTORABI ZARCHI M M, RAZFAR M R, ABDULLAH A. Influence of ultrasonic vibrations on side milling of AISI 420 stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(1-4): 83-89 doi: 10.1007/s00170-012-4307-9
    [15] SHEN X H, ZHANG J H, YIN T J, et al. A study on cutting force in micro end milling with ultrasonic vibration[J]. Advanced Materials Research, 2010, 97-101: 1910-1914 doi: 10.4028/www.scientific.net/AMR.97-101.1910
    [16] DING H, CHEN S J, CHENG K. Two-dimensional vibration-assisted micro end milling: Cutting force modelling and machining process dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(12): 1775-1783 doi: 10.1243/09544054JEM1984
    [17] VERMA G C, PANDEY P M, DIXIT U S. Modeling of static machining force in axial ultrasonic-vibration assisted milling considering acoustic softening[J]. International Journal of Mechanical Sciences, 2018, 136: 1-16 doi: 10.1016/j.ijmecsci.2017.11.048
    [18] KO J H, SHAW K C, CHUA H K, et al. Cusp error reduction under high speed micro/meso-scale milling with ultrasonic vibration assistance[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(1): 15-20 doi: 10.1007/s12541-011-0002-2
    [19] UHLMANN E, PROTZ F, STAWISZYNSKI B, et al. Ultrasonic assisted milling of reinforced plastics[J]. Procedia CIRP, 2017, 66: 164-168 doi: 10.1016/j.procir.2017.03.278
    [20] HALIM N F H A, ASCROFT H, BARNES S. Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon Fibre reinforced plastic (CFRP)[J]. Procedia Engineering, 2017, 184: 185-191 doi: 10.1016/j.proeng.2017.04.084
    [21] SUÁREZ A, VEIGA F, DE LACALLE L N L, et al. Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-Alloy 718[J]. Journal of Materials Engineering and Performance, 2016, 25(11): 5076-5086 doi: 10.1007/s11665-016-2343-6
    [22] 王兴文. 超声激励下的SiCp/AL铣削机理及表面质量研究[D]. 太原: 中北大学, 2018

    WANG X W. SiCp/AL milling mechanism and surface quality under ultrasonic excitation[D]. Taiyuan: North University of China, 2018 (in Chinese)
    [23] 李炳林, 胡于进, 王学林, 等. 基于斜角切削理论的立铣切削力预测研究[J]. 中国机械工程, 2011, 22(19): 2283-2288 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201119004.htm

    LI B L, HU Y J, WANG X L, et al. Cutting force prediction based on oblique cutting theory in end milling[J]. China Mechanical Engineering, 2011, 22(19): 2283-2288 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201119004.htm
    [24] MERCHANT M E. Mechanics of the metal cutting process. I. orthogonal cutting and a type 2 chip[J]. Journal of Applied Physics, 1945, 16(5): 267 doi: 10.1063/1.1707586
    [25] S. 马尔金. 磨削技术理论与应用[M]. 蔡光起, 巩亚东, 宋贵亮, 译. 沈阳: 东北大学出版社, 2002

    MALKIN S. Theory and application of machining with abrasives[M]. CAI G Q, GONG Y D, SONG G L, trans. Shenyang: Northeastern University Press, 2002 (in Chinese)
    [26] DURGUMAHANTI U S P, SINGH V, RAO P V. A new model for grinding force prediction and analysis[J]. International Journal of Machine Tools and Manufacture, 2010, 50(3): 231-240 doi: 10.1016/j.ijmachtools.2009.12.004
    [27] ABOOTORABI ZARCHI M M, RAZFAR M R, ABDULLAH A. Influence of ultrasonic vibrations on side milling of AISI 420 stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(1-4): 83-89 doi: 10.1007/s00170-012-4307-9
    [28] 任敬心, 华定安. 磨削原理[M]. 西安: 西北工业大学出版社, 1988

    REN J X, HUA D A. Grinding principle[M]. Xi'an: Electronic Industry Press, 1988 (in Chinese)
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  47
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 刊出日期:  2021-12-05

目录

    /

    返回文章
    返回