留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢轨吸振器振动能量的多模态压电式俘能研究

钱韦吉 雍胜杰

钱韦吉,雍胜杰. 钢轨吸振器振动能量的多模态压电式俘能研究[J]. 机械科学与技术,2021,40(11):1657-1663 doi: 10.13433/j.cnki.1003-8728.20200274
引用本文: 钱韦吉,雍胜杰. 钢轨吸振器振动能量的多模态压电式俘能研究[J]. 机械科学与技术,2021,40(11):1657-1663 doi: 10.13433/j.cnki.1003-8728.20200274
QIAN Weiji, YONG Shengjie. Research on Multi-modal Piezoelectric Energy Harvesting Technology of Rail Vibration Absorber[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1657-1663. doi: 10.13433/j.cnki.1003-8728.20200274
Citation: QIAN Weiji, YONG Shengjie. Research on Multi-modal Piezoelectric Energy Harvesting Technology of Rail Vibration Absorber[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1657-1663. doi: 10.13433/j.cnki.1003-8728.20200274

钢轨吸振器振动能量的多模态压电式俘能研究

doi: 10.13433/j.cnki.1003-8728.20200274
基金项目: 国家自然科学基金项目(51505396)与中国博士后科学基金项目(2016M602711)
详细信息
    作者简介:

    钱韦吉,副教授,博士,研究方向为轨道交通的振动能量回收,qwjst@163.com

  • 中图分类号: TN384

Research on Multi-modal Piezoelectric Energy Harvesting Technology of Rail Vibration Absorber

  • 摘要: 提出一种结合钢轨吸振器与多模态压电式俘能器的新型振动能量回收技术,在有效减轻轨道振动的条件下,回收钢轨吸振器的振动能量为各类轨道监测设备供能。通过建立车轮-轨道-吸振器系统的振动分析模型,研究了能量回收模块对吸振器减振性能的影响规律,并使用谐响应分析研究了能量回收模块的发电能力。分析结果显示,当多模态能量回收装置安装在钢轨吸振器上时,不会对钢轨吸振器的减振性能产生明显影响。并且,多模态结构能有效拓宽0~600 Hz频率范围内的振动能量回收频带,提高振动能量的回收效率。
  • 图  1  轮轨模型

    图  2  细化网格

    图  3  添加能量回收模块的钢轨吸振器

    图  4  螺旋型悬臂梁结构

    图  5  简化的悬臂梁结构

    图  6  压电陶瓷等效电路

    图  7  轮轨系统复模态分析

    图  8  瞬时动态分析结果

    图  9  功率谱密度分析结果

    图  10  振动位移随时间变化曲线

    图  11  能量回收模块分别耦合在钢轨吸振器端面和居中面时承受的最大应力

    图  12  压电陶瓷输出功率随频率变化曲线

    图  13  共振频率分析结果

    表  1  轮轨模型的连接参数

    连接参数X(轴向)Y(竖向)Z(纵向)
    道床支撑刚度/(N·m−1) 5.0 × 107 5.0 × 107 8.9 × 107
    道床支撑阻尼/(N·s·m−1) 4.0 × 104 4.0 × 104 8.9 × 104
    钢轨扣件刚度/(N·m−1) 8.9 × 106 8.9 × 106 4.1 × 107
    钢轨扣件阻尼/(N·s·m−1) 2.1 × 103 2.1 × 103 2.1 × 103
    吸振器刚度/(N·m−1) 1.5 × 107 1.5 × 107 3.0 × 107
    吸振器阻尼/(N·s·m−1) 2.0 × 104 2.0 × 104 2.0 × 104
    下载: 导出CSV

    表  2  轮轨模型的材料参数

    部件 材料密度/(kg·m−3) 弹性模量/GPa 泊松比
    枕木 2400 32.5 0.3
    车轮和钢轨 7800 210 0.3
    下载: 导出CSV

    表  3  轨道振动能量采集模型的材料参数

    名称密度/
    (kg·m−3)
    弹性模
    量/GPa
    长×宽×高/
    mm
    泊松比
    吸振器 7850 210 425 × 45 × 90
    0.29
    悬臂梁 8600 134 20 × 5 × 0.8 0.30
    压电片 7600 80 24 × 5 × 0.3 0.36
    质量块 7400 160 20 × 5 × 20 0.24
    注:悬臂梁为螺旋型悬臂梁的末端梁,梁臂间隙为2 mm
    下载: 导出CSV
  • [1] 谢家满. 地铁轨道交通供电系统及其安全性分析[J]. 建筑工程技术与设计, 2019(7): 3443 doi: 10.12159/j.issn.2095-6630.2019.07.3315

    XIE J M. Power supply system of metro rail transit and its safety analysis[J]. Architectural Engineering Technology and Design, 2019(7): 3443 (in Chinese) doi: 10.12159/j.issn.2095-6630.2019.07.3315
    [2] DOS SANTOS N C, BARBOSA J, CALÇADA R, et al. Track-ground vibrations induced by railway traffic: experimental validation of a 3D numerical model[J]. Soil Dynamics and Earthquake Engineering, 2017, 97(5): 324-344
    [3] CROFT B E, JONES C J C, THOMPSON D J. Modelling the effect of rail dampers on wheel–rail interaction forces and rail roughness growth rates[J]. Journal of Sound and Vibration, 2009, 323(1-2): 17-32 doi: 10.1016/j.jsv.2008.12.013
    [4] ZHU S Y, WANG J W, CAI C B, et al. Development of a vibration attenuation track at low frequencies for urban rail transit[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(9): 713-726 doi: 10.1111/mice.12285
    [5] 杨沥, 袁天辰, 杨俭, 等. 两自由度压电式轨道振动能量采集器[J]. 上海工程技术大学学报, 2019, 33(3): 225-331 doi: 10.3969/j.issn.1009-444X.2019.03.007

    YANG L, YUAN T C, YANG J, et al. Two-degree-of-freedom piezoelectric track vibration energy harvester[J]. Journal of Shanghai University of Engineering Science, 2019, 33(3): 225-331 (in Chinese) doi: 10.3969/j.issn.1009-444X.2019.03.007
    [6] 李小珍, 刘鸣, 肖林, 等. 基于压电悬臂梁的铁路钢桁梁桥振动能量收集方案研究[J]. 世界桥梁, 2018, 46(5): 50-54, 63 doi: 10.3969/j.issn.1671-7767.2018.05.011

    LI X Z, LIU M, XIAO L, et al. Study of vibration energy harvesting schemes based on piezoelectric cantilever beam for railway steel truss girder bridge[J]. World Bridges, 2018, 46(5): 50-54, 63 (in Chinese) doi: 10.3969/j.issn.1671-7767.2018.05.011
    [7] WU B W, CHEN G X, KANG X, et al. Study on the origin of rail corrugation at a long downhill braking section based on friction-excited oscillation[J]. Tribology Transactions, 2020, 63(3): 439-452 doi: 10.1080/10402004.2019.1707336
    [8] 陈光雄, 戴焕云, 曾京, 等. 车轮双侧踏面制动尖叫噪声和颤振的有限元分析[J]. 工程力学, 2009, 26(4): 234-239

    CHEN G X, DAI H Y, ZENG J, et al. A finite element analysis of the squeal and chatter propensity for a double pads-wheel brake system[J]. Engineering Mechanics, 2009, 26(4): 234-239 (in Chinese)
    [9] 钱韦吉, 黄志强. 蠕滑力饱和条件下钢轨吸振器抑制短波波磨的理论研究[J]. 振动与冲击, 2019, 38(14): 68-73, 111

    QIAN W J, HUANG Z Q. Theoretical study on the suppression of short pitch rail corrugation induced vibration by rail vibration absorbers under saturated creep forces condition[J]. Journal of Vibration and Shock, 2019, 38(14): 68-73, 111 (in Chinese)
    [10] 崔晓璐, 钱韦吉, 张青, 等. 直线线路科隆蛋扣件地段钢轨波磨成因的理论研究[J]. 振动与冲击, 2016, 35(13): 114-118, 152

    CUI X L, QIAN W J, ZHANG Q, et al. Forming mechanism of rail corrugation of a straight track section supported by Cologne-egg fasteners[J]. Journal of Vibration and Shock, 2016, 35(13): 114-118, 152 (in Chinese)
    [11] 陈光雄, 钱韦吉, 莫继良, 等. 轮轨摩擦自激振动引起小半径曲线钢轨波磨的瞬态动力学[J]. 机械工程学报, 2014, 50(9): 71-76 doi: 10.3901/JME.2014.09.071

    CHEN G X, QIAN W J, MO J L, et al. A transient dynamics study on wear-type rail corrugation on a tight curve due to the friction-induced self-excited vibration of a wheelset-track system[J]. Journal of Mechanical Engineering, 2014, 50(9): 71-76 (in Chinese) doi: 10.3901/JME.2014.09.071
    [12] AB RAHMAN M F, KOK S L, RUSLAN E, et al. Comparison study between four poles and two poles magnets structure in the hybrid vibration energy harvester[J]. Research and Development, 2015, 13(1): 227-231
    [13] LI P, GAO S Q, CAI H T. Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations[J]. Microsystem Technologies, 2015, 21(2): 401-414 doi: 10.1007/s00542-013-2030-6
    [14] ZUO L, ZHANG P S. Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions[J]. Journal of Vibration and Acoustics, 2013, 135(1): 011002 doi: 10.1115/1.4007562
    [15] YUAN T C, YANG J, SONG R G, et al. Vibration energy harvesting system for railroad safety based on running vehicles[J]. Smart Materials and Structures, 2014, 23(12): 125046 doi: 10.1088/0964-1726/23/12/125046
    [16] 张雷. 多模态压电-电磁复合俘能技术研究[D]. 哈尔滨: 哈尔滨大学, 2017.

    ZHANG L. Research on multi-mode piezoelectric-electromagnetic hybrid energy harvester technology[D].Harbin: Harbin Engineering University, 2017 (in Chinese).
    [17] 陈凯旋. 压电材料综合参数测量系统[D]. 武汉: 华中科技大学, 2019.

    CHEN K X. Piezoelectric materials comprehensive parameters measurement system[D]. Wuhan: Huazhong University of Science & Technology, 2019 (in Chinese).
    [18] 吕辉, 于德介, 谢展, 等. 基于响应面法的汽车盘式制动器稳定性优化设计[J]. 机械工程学报, 2013, 49(9): 55-60 doi: 10.3901/JME.2013.09.055

    LYU H, YU D J, XIE Z, et al. Optimization of vehicle disc brakes stability based on response surface method[J]. Journal of Mechanical Engineering, 2013, 49(9): 55-60 (in Chinese) doi: 10.3901/JME.2013.09.055
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  70
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-28
  • 网络出版日期:  2021-11-24
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回