留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiAl与GH3039异种材料摩擦焊接工艺及接头组织

王松林 杜随更 李娜

王松林,杜随更,李娜. TiAl与GH3039异种材料摩擦焊接工艺及接头组织[J]. 机械科学与技术,2020,39(12):1957-1962 doi: 10.13433/j.cnki.1003-8728.20200272
引用本文: 王松林,杜随更,李娜. TiAl与GH3039异种材料摩擦焊接工艺及接头组织[J]. 机械科学与技术,2020,39(12):1957-1962 doi: 10.13433/j.cnki.1003-8728.20200272
Wang Songlin, Du Suigeng, Li Na. Technique and Microstructure of Friction Joint of TiAl and GH3039 Dissimilar Aollys[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1957-1962. doi: 10.13433/j.cnki.1003-8728.20200272
Citation: Wang Songlin, Du Suigeng, Li Na. Technique and Microstructure of Friction Joint of TiAl and GH3039 Dissimilar Aollys[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1957-1962. doi: 10.13433/j.cnki.1003-8728.20200272

TiAl与GH3039异种材料摩擦焊接工艺及接头组织

doi: 10.13433/j.cnki.1003-8728.20200272
基金项目: 国家自然科学基金项目(51675434)资助
详细信息
    作者简介:

    王松林(1989−),博士研究生,研究方向为摩擦焊接工艺及机械连接技术,wangsonglin10@126.com

    通讯作者:

    杜随更,教授,博士生导师,fwcenter@nwpu.edu.cn

  • 中图分类号: TG44

Technique and Microstructure of Friction Joint of TiAl and GH3039 Dissimilar Aollys

  • 摘要: 为提高TiAl与GH3039异种材料摩擦焊接接头性能,对主要摩擦焊接参数进行优化,利用半自然热电偶法对焊接过程界面温度进行实时测量,采用扫描电镜(SEM)和能谱仪(EDS)对界面组织结构及拉伸断口进行分析。结果表明:GH3039出模量的变化对接头抗拉强度影响较大,当出模量为4.1 mm时,接头强度可达374 MPa。通过标定NiSi-GH3039热接点热电势与温度的关系,测量得到准稳定摩擦阶段界面温度为960 ~1 030 °C,处于TiAl合金的超塑性温度范围。焊后界面结合良好,没有裂纹及孔穴等缺陷,焊合区形成了五层合金相过渡层。接头断裂易发生于Al3NiTi2脆性相层,断口主要形貌为凹凸的摩擦环。
  • 图  1  试样制备示意图

    图  2  测温回路原理图

    图  3  拘束套约束方式示意图

    图  4  不同出模量下的抗拉强度和摩擦缩短量

    图  5  不同出模量下的飞边形貌

    图  6  NiSi-G3039半自然热电偶热电势标定曲线

    图  7  焊接过程参数变化曲线

    图  8  焊接界面微观组织

    图  9  焊接界面合金元素EPMA线扫描

    图  10  TiAl侧热力影响区微观组织

    图  11  不同出模量下的断口宏观形貌

    图  12  TiAl侧断口微观形貌

    表  1  材料化学成分 %

    材料TiAlNiCrVFeMoNb
    TiAl 49.0 47.5 1.0 2.5
    GH3039 0.6 1.1 69.6 22.6 2.9 1.2 0.7
    下载: 导出CSV

    表  2  断口不同区域EDS元素含量 %

    区域TiAlNiCrVFeMoNb
    153.2234.863.432.885.390.130.010.04
    240.2339.2013.633.962.330.420.150.06
    318.4920.8045.1713.081.250.100.560.43
    下载: 导出CSV
  • [1] Du Z H, Zhang K F, Lu Z, et al. Microstructure and mechanical properties of vacuum diffusion bonding joints for γ-TiAl based alloy[J]. Vacuum, 2018, 150: 96-104 doi: 10.1016/j.vacuum.2018.01.035
    [2] Song Y L, Dou Z H, Zhang T A, et al. A novel continuous and controllable method for fabrication of as-cast TiAl alloy[J]. Journal of Alloys and Compounds, 2019, 789: 266-275 doi: 10.1016/j.jallcom.2019.03.050
    [3] Dong H G, Yang Z L, Wang Z R, et al. CuTiNiZrV amorphous alloy foils for vacuum brazing of TiAl alloy to 40Cr steel[J]. Journal of Materials Science & Technology, 2015, 31(2): 217-222
    [4] Li Y L, He P, Feng J C. Interface structure and mechanical properties of the TiAl/42CrMo steel joint vacuum brazed with Ag-Cu/Ti/Ag–Cu filler metal[J]. Scripta Materialia, 2006, 55(2): 171-174 doi: 10.1016/j.scriptamat.2006.03.055
    [5] Lee W B, Kim M G, Koo J M, et al. Friction welding of TiAl and AISI4140[J]. Journal of Materials Science, 2004, 39(3): 1125-1128 doi: 10.1023/B:JMSC.0000012960.59095.5a
    [6] Dong H G, Yu L Z, Deng D W, et al. Direct friction welding of TiAl alloy to 42CrMo steel rods[J]. Materials and Manufacturing Processes, 2015, 30(9): 1104-1108 doi: 10.1080/10426914.2014.973576
    [7] Dong H G, Yu L Z, Gao H M, et al. Microstructure and mechanical properties of friction welds between TiAl alloy and 40Cr steel rods[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10): 3126-3133 doi: 10.1016/S1003-6326(14)63451-8
    [8] Ding Y H, You G Q, Wen H Y, et al. Microstructure and mechanical properties of inertia friction welded joints between alloy steel 42CrMo and cast Ni-based superalloy K418[J]. Journal of Alloys and Compounds, 2019, 803: 176-184 doi: 10.1016/j.jallcom.2019.06.136
    [9] Zhang L X, Sun Z, Xue Q, et al. Transient liquid phase bonding of IC10 single crystal with GH3039 superalloy using BNi2 interlayer: microstructure and mechanical properties[J]. Materials & Design, 2016, 90: 949-957
    [10] Luo G X, Wu G Q, Huang Z, et al. Diffusion bonding of laser-surface-modified gamma titanium aluminide alloy to nickel-base casting alloy[J]. Scripta Materialia, 2007, 57(6): 521-524 doi: 10.1016/j.scriptamat.2007.05.020
    [11] Li H X, He P, Lin T S, et al. Microstructure and shear strength of reactive brazing joints of TiAl/Ni-based alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 324-329 doi: 10.1016/S1003-6326(11)61178-3
    [12] Li H X, Wei H M, He P, et al. Effects of alloying elements in GH99 superalloy on microstructure evolution of reactive brazing TiAl/GH99 joints[J]. Intermetallics, 2013, 34: 69-74 doi: 10.1016/j.intermet.2012.11.008
    [13] Dong K W, Kong J, Wei Z X, et al. Thermoplastic bonding (TPB) of TiAl- and Ni-based alloys with Zr-Al-Ni-Cu bulk metallic glass[J]. Materials & Design, 2019, 181: 107936
    [14] Du S G, Wang S L, Ding K. A novel method of friction-diffusion welding between TiAl alloy and GH3039 high temperature alloy[J]. Journal of Manufacturing Processes, 2020, 56: 688-696 doi: 10.1016/j.jmapro.2020.05.046
    [15] 杜随更, 段立宇, 吴诗惇, 等. 半自然热电偶测温法——一种测量摩擦界面温度及其分布的新方法[J]. 焊接, 1996,(7): 5-9, 20

    Du S G, Duan L Y, Wu S D, et al. Temperature measurement with semi-thermal couple[J]. Welding & Joining, 1996,(7): 5-9, 20 (in Chinese)
    [16] Cai X L, Sun D Q, Li H M, et al. Dissimilar joining of TiAl alloy and Ni-based superalloy by laser welding technology using V/Cu composite interlayer[J]. Optics & Laser Technology, 2019, 111: 205-213
    [17] 张俊红, 徐亚娟, 黄伯云, 等. TiAl基合金超塑性变形的力学行为研究[J]. 稀有金属材料与工程, 2014, 43(6): 1492-1496

    Zhang J H, Xu Y J, Huang B Y, et al. Mechanical properties of TiAl based alloy during superplastic deformation[J]. Rare Metal Materials and Engineering, 2014, 43(6): 1492-1496 (in Chinese)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  18
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-10
  • 网络出版日期:  2020-12-08
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回