留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隔振硅橡胶Maxwell分布阶本构模型及其冲击力学行为特性

秦园 李占龙 孙大刚 王瑶 孙宝

秦园, 李占龙, 孙大刚, 王瑶, 孙宝. 隔振硅橡胶Maxwell分布阶本构模型及其冲击力学行为特性[J]. 机械科学与技术, 2021, 40(1): 16-21. doi: 10.13433/j.cnki.1003-8728.20200261
引用本文: 秦园, 李占龙, 孙大刚, 王瑶, 孙宝. 隔振硅橡胶Maxwell分布阶本构模型及其冲击力学行为特性[J]. 机械科学与技术, 2021, 40(1): 16-21. doi: 10.13433/j.cnki.1003-8728.20200261
QIN Yuan, LI Zhanlong, SUN Dagang, WANG Yao, SUN Bao. A Distributed-order Maxwell Constitutive Model for Vibration Isolation SR and its Shock Response[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 16-21. doi: 10.13433/j.cnki.1003-8728.20200261
Citation: QIN Yuan, LI Zhanlong, SUN Dagang, WANG Yao, SUN Bao. A Distributed-order Maxwell Constitutive Model for Vibration Isolation SR and its Shock Response[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 16-21. doi: 10.13433/j.cnki.1003-8728.20200261

隔振硅橡胶Maxwell分布阶本构模型及其冲击力学行为特性

doi: 10.13433/j.cnki.1003-8728.20200261
基金项目: 

国家自然科学基金项目 51805347

中国博士后科学基金项目 2019M661058

山西省高等学校科技创新项目 2019L0635

山西省自然科学基金项目 201801D121168

详细信息
    作者简介:

    秦园(1986-), 讲师, 研究方向为工程机械的振动与噪声控制, qinyuankd@tyust.edu.cn

    通讯作者:

    李占龙, 副教授, 硕士生导师, lizl@tyust.edu.cn

  • 中图分类号: O328

A Distributed-order Maxwell Constitutive Model for Vibration Isolation SR and its Shock Response

  • 摘要: 为精确描述隔振硅橡胶冲击力学行为,基于高应变率下硅橡胶呈阶段性力学响应,且分数阶Maxwell模型中阶数α可体现材料粘弹性分布,将阶数α分布取值,构建了Maxwell分布阶本构模型。采用SHPB技术开展了高应变率下的隔振硅橡胶冲击力学性能实验,对模型进行验证。结果表明:高应变率下隔振硅橡胶的应力-应变实验曲线可分为4个阶段,即弹性阶段、软化阶段、硬化阶段和失效阶段;随应变率的增大,屈服应变、屈服应力及割线模量均增大;软化阶段内曲线的上凸曲率增大;硬化阶段内分子链运动能力越差,硬化效应越显著;分析了Maxwell分布阶本构模型对实验数据的表征能力,结果表明不同应变率下该模型的RMSE均值仅为0.087 2。Maxwell分布阶本构模型对粘弹性冲击力学行为的表征具有较好的综合优势,即精度高、物理含义明确,可在较宽应变率范围准确描述隔振硅橡胶的冲击力学行为特性。
  • 图  1  黏弹性振子模型和分数阶Maxwell模型

    图  2  高应变率下硅橡胶材料的典型本构关系

    图  3  SHPB实验系统

    图  4  应力波的传播过程[16]

    图  5  不同应变率下硅橡胶材料应力-应变曲线

    图  6  不同应变率下Maxwell分布阶模型的拟合情况

    表  1  不同应变率下应力-应变曲线的特征参数值

    ε ε ε ε εs σs/MPa E/MPa
    2500 0.013 0.259 - 0.315 0.259 4.383 18.837
    2800 0.013 0.329 - 0.370 0.323 5.437 19.147
    3200 0.013 0.258 0.385 0.428 0.385 6.830 20.155
    3450 0.021 0.247 0.415 0.468 0.415 8.322 21.938
    3600 0.013 0.244 0.416 0.489 0.416 9.068 22.481
    下载: 导出CSV

    表  2  高应变率下Maxwell分布模型参数值

    软化阶段 硬化阶段
    阶段Ⅱa 阶段Ⅱb
    c, k, β α c, k, β α α, β ke
    2 500 0.431 0.414 -
    2 800 c=4×105 0.428 c=4×105 0.411 α=0
    β=0
    -
    3 200 k=6×106 0.420 k=6×106 0.409 1.370×107
    3 450 β=0.100 0.435 β=0.100 0.422 1.603×107
    3 600 0.445 0.428 2.004×107
    下载: 导出CSV
  • [1] MORI K, KONO D, YAMAJI I, et al. Modelling of viscoelastic damper support for reduction in low frequency residual vibration in machine tools[J]. Precision Engineering, 2017, 50:313-319 doi: 10.1016/j.precisioneng.2017.06.004
    [2] GHAEMMAGHAMI A R, KWON O S. Nonlinear modeling of MDOF structures equipped with viscoelastic dampers with strain, temperature and frequency-dependent properties[J]. Engineering Structures, 2018, 168:903-914 doi: 10.1016/j.engstruct.2018.04.037
    [3] NAKRA B C. Vibration control in machines and structures using viscoelastic damping[J]. Journal of Sound & Vibration, 1998, 211(3):449-465
    [4] LEWANDOWSKI R. Influence of temperature on the dynamic characteristics of structures with viscoelastic dampers[J]. Journal of Structural Engineering, 2019, 145(2):04018245 doi: 10.1061/(ASCE)ST.1943-541X.0002238
    [5] 胡洋, 赵祺, 芦艾, 等.苯基硅橡胶泡沫的制备及阻尼性能[J].材料导报, 2019, 33(10):1752-1755 doi: 10.11896/cldb.18090240

    HU Y, ZHAO Q, LU A, et al. Preparation and damping properties of phenyl silicone rubber foam[J]. Materials Review, 2019, 33(10):1752-1755 (in Chinese) doi: 10.11896/cldb.18090240
    [6] SASSO M, CHIAPPINI G, ROSSI M, et al. Visco-hyper-pseudo-elastic characterization of a fluoro-silicone rubber[J]. Experimental Mechanics, 2014, 54(3):315-328 doi: 10.1007/s11340-013-9807-5
    [7] 涂春潮, 王珊, 任玉柱, 等.阻尼硅橡胶/丁苯橡胶共混胶动态性能[J].航空材料学报, 2014, 34(2):58-62 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201402012.htm

    TU C C, WANG S, REN Y Z, et al. Dynamic mechanical properties of damping silicon rubber/styrene-butadiene rubber blend[J]. Journal of Aeronautical Materials, 2014, 34(2):58-62 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201402012.htm
    [8] ILG J, RUPITSCH S J, SUTOR A, et al. Determination of dynamic material properties of silicone rubber using one-point measurements and finite element simulations[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(11):3031-3038 doi: 10.1109/TIM.2012.2203449
    [9] 米志安, 黄艳华, 苏正涛, 等.周期载荷下的阻尼硅橡胶动态粘弹性研究[J].特种橡胶制品, 2011, 32(1):33-35 doi: 10.3969/j.issn.1005-4030.2011.01.007

    MI Z A, HUANG Y H, SUN Z T, et al. Study on dynamic-viscoelastic properties of dampening silicone rubber under periodical loading[J]. Special Purpose Rubber Products, 2011, 32(1):33-35 (in Chinese) doi: 10.3969/j.issn.1005-4030.2011.01.007
    [10] 刘占芳, 励凌峰, 胡文军.多孔硅橡胶有限变形的粘弹性行为[J].固体力学学报, 2002, 32(3):347-353 doi: 10.3969/j.issn.0254-7805.2002.03.015

    LIU Z F, LI L F, HU W J. Viscoelastic behaviors of porous silicone rubbers under finite deformation[J]. Acta Mechanica Solida Sinica, 2002, 32(3):347-353 (in Chinese) doi: 10.3969/j.issn.0254-7805.2002.03.015
    [11] 郭玲梅, 汪洋, 徐伟芳.硅橡胶拉伸力学的应变率相关性研究[J].中国测试, 2018, 44(10):85-88 doi: 10.11857/j.issn.1674-5124.2018.10.014

    GUO L M, WANG Y, XU W F. The study on strain-rate dependence of tension behavior of filled silicone rubber[J]. China Measurement & Test, 2018, 44(10):85-88 (in Chinese) doi: 10.11857/j.issn.1674-5124.2018.10.014
    [12] 胡时胜, 王正道, 赵立中.泡沫硅橡胶动态力学性能的实验研究[J].高分子材料科学与工程, 1999, 15(2):113-115 doi: 10.3321/j.issn:1000-7555.1999.02.032

    HU S S, WANG Z D, ZHAO L Z. Experimental study of dynamic mechanical behaviors of silicone rubber foam[J]. Polymer Materials Science and Engineering, 1999, 15(2):113-115 (in Chinese) doi: 10.3321/j.issn:1000-7555.1999.02.032
    [13] 林玉亮, 卢芳云, 卢力.高应变率下硅橡胶的本构行为研究[J].高压物理学报, 2007, 21(3):289-294 doi: 10.3969/j.issn.1000-5773.2007.03.012

    LIN Y L, LU F Y, LU L. Constitutive behaviors of a silicone rubber at high strain rates[J]. Chinese Journal of High Pressure Physics, 2007, 21(3):289-294 (in Chinese) doi: 10.3969/j.issn.1000-5773.2007.03.012
    [14] LI Z L, SUN D G, QIN Y, et al. Stiffness-damping matching modelling for vibration isolation system of roadheader ECB[J]. International Journal of Acoustics and Vibration, 2020, 25(1):54-61 doi: 10.20855/ijav.2020.25.11514
    [15] LI Z L, QIN Y, SUN B, et al. A fractional approach to the time-temperature dependence of dynamic viscoelastic behavior[J]. Journal of Mechanical Science and Technology, 2019, 33(1):139-147 doi: 10.1007/s12206-018-1214-5
    [16] BAI Y, LIU C M, HUANG G Y, et al. A hyper-viscoelastic constitutive model for polyurea under uniaxial compressive loading[J]. Polymers, 2016, 8(4):133 doi: 10.3390/polym8040133
    [17] 卢芳云, CHEN W, FREW D J.软材料的SHPB实验设计[J].爆炸与冲击, 2002, 22(1):15-19 https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200201002.htm

    LU F Y, CHEN W, FREW D J. A design of SHPB experiments for soft materials[J]. Explosion and Shock Waves, 2002, 22(1):15-19 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200201002.htm
    [18] SONG B, CHEN W. One-dimensional dynamic compressive behavior of EPDM rubber[J]. Journal of Engineering Materials and Technology, 2003, 125(3):294-301 doi: 10.1115/1.1584492
    [19] DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3):155-179 doi: 10.1016/0022-5096(63)90050-4
    [20] LEE O S, CHO K S, KIM S H, et al. Dynamic deformation behavior of soft material using SHPB technique and pulse shaper[J]. International Journal of Modern Physics B, 2006, 20(25-27):3751-3756
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  70
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 刊出日期:  2021-01-01

目录

    /

    返回文章
    返回