留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核酸检测一体化微流控芯片设计与液滴操纵分析

杭跃航 任晓龙 刘竹丽 赵子龙 郭攀

杭跃航, 任晓龙, 刘竹丽, 赵子龙, 郭攀. 核酸检测一体化微流控芯片设计与液滴操纵分析[J]. 机械科学与技术, 2021, 40(10): 1590-1594. doi: 10.13433/j.cnki.1003-8728.20200248
引用本文: 杭跃航, 任晓龙, 刘竹丽, 赵子龙, 郭攀. 核酸检测一体化微流控芯片设计与液滴操纵分析[J]. 机械科学与技术, 2021, 40(10): 1590-1594. doi: 10.13433/j.cnki.1003-8728.20200248
HANG Yuehang, REN Xiaolong, LIU Zhuli, ZHAO Zilong, GUO Pan. Integrated Microfluidic Chip Design for Nucleic Acid Detection and Analysis of Droplet Manipulation[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(10): 1590-1594. doi: 10.13433/j.cnki.1003-8728.20200248
Citation: HANG Yuehang, REN Xiaolong, LIU Zhuli, ZHAO Zilong, GUO Pan. Integrated Microfluidic Chip Design for Nucleic Acid Detection and Analysis of Droplet Manipulation[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(10): 1590-1594. doi: 10.13433/j.cnki.1003-8728.20200248

核酸检测一体化微流控芯片设计与液滴操纵分析

doi: 10.13433/j.cnki.1003-8728.20200248
详细信息
    作者简介:

    杭跃航(1995-), 硕士研究生, 研究方向为微流控研究及核酸检测设备开发, yuehang1990@126.com

    通讯作者:

    任晓龙, 高级工程师, 硕士生导师, renxiiaolong@163.com

  • 中图分类号: O482.54

Integrated Microfluidic Chip Design for Nucleic Acid Detection and Analysis of Droplet Manipulation

  • 摘要: 设计了一种基于磁珠法的两相流液滴微流控芯片,包含样品提纯、扩增和检测一系列连续的生化过程,可用于快速核酸检测。首先建立了磁珠和液滴在两相流体系内的动力学模型,并借助有限元仿真平台对磁珠微团所处环境进行了磁场仿真,得到不同体积磁珠微团所受的磁力。进一步还分析了磁珠微团、液滴体积、永磁体移动速度对液滴运动状态的影响,最终总结出液滴操纵图。
  • 图  1  核酸检测微流控芯片结构示意图

    图  2  Rb示意图

    图  3  液滴的3种状态

    图  4  有限元仿真软件COMSOL仿真模型

    图  5  磁珠微团位于永磁体正上方时的磁场分布

    图  6  过磁珠中心X方向和Z方向磁场强度分量

    图  7  不同体积的磁珠微团的受力大小

    图  8  在永磁体速度为4 mm/s时, 液滴体积与磁珠微团体积对液滴操纵的影响

    图  9  在液滴体积为20 μL时, 磁珠微团体积与永磁体速度对液滴操纵的影响

    图  10  在磁珠微团体积为2 μL时, 液滴体积与永磁体速度对液滴操纵的影响

    表  1  物理参数值

    参数名 参数值
    永磁体底面直径⌀/mm 1.5
    永磁体高度h/mm 10
    永磁体X方向剩余磁通密度Br/mT 0
    永磁体Y方向剩余磁通密度Br/mT 0
    永磁体Z方向剩余磁通密度Br/mT 500
    真空磁导率μ0/(H·m-1) 4π×10-7
    磁珠体积磁化率χ 0.29
    油/水界面张力/(N·m-1) 0.051
    磁珠微团球心距永磁体端部距离/mm 2
    接触角θ/(°) 160
    硅油粘度μoil/(Pa·s) 0.05
    下载: 导出CSV
  • [1] 章春笋, 邢达. 连续流动式PCR微流控装置的研究[J]. 激光生物学报, 2007, 16(4): 501-508 doi: 10.3969/j.issn.1007-7146.2007.04.024

    ZHANG C S, XING D. A study on a continuous-flow PCR microfiuidics[J]. Acta Laser Biology Sinica, 2007, 16(4): 501-508 (in Chinese) doi: 10.3969/j.issn.1007-7146.2007.04.024
    [2] JEONG O C, KONISHI S. Fabrication of a peristaltic micro pump with novel cascaded actuators[J]. Journal of Micromechanics and Microengineering, 2008, 18(2): 025022 doi: 10.1088/0960-1317/18/2/025022
    [3] QIAN J Y, CHEN M R, LIU X L, et al. A numerical investigation of the flow of nanofluids through a micro Tesla valve[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2019, 20(1): 50-60 doi: 10.1631/jzus.A1800431.pdf
    [4] SOLVAS X C I, DEMELLO A. Droplet microfluidics: recent developments and future applications[J]. Chemical Communications, 2011, 47(7): 1936-1942 doi: 10.1039/C0CC02474K
    [5] TEH S Y, LIN R, HUNG L H, et al. Droplet microfluidics[J]. Lab on A Chip, 2008, 8(2): 198-220 doi: 10.1039/b715524g
    [6] SHI X, CHEN C H, GAO W M, et al. Parallel RNA extraction using magnetic beads and a droplet array[J]. Lab on a Chip, 2015, 15(4): 1059-1065 doi: 10.1039/C4LC01111B
    [7] WANG Y Z, ZHAO Y J, CHO S K. In-droplet magnetic beads concentration and separation for digital microfluidics[C]//TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference. Lyon: IEEE, 2007: 711-714
    [8] 曾一笑, 樊磊, 吴菲, 等. 基于介电电泳的粒子分离微流控芯片的研究[J]. 仪表技术与传感器, 2017(2): 5-8, 14 doi: 10.3969/j.issn.1002-1841.2017.02.002

    ZENG Y X, FAN L, WU F, et al. Study on particle separation of microfluidic chip based on dielectrophoresis[J]. Instrument Technique and Sensor, 2017(2): 5-8, 14 (in Chinese) doi: 10.3969/j.issn.1002-1841.2017.02.002
    [9] FORNELL A, OHLIN M, GAROFALO F, et al. An intra-droplet particle switch for droplet microfluidics using bulk acoustic waves[J]. Biomicrofluidics, 2017, 11(3): 031101 doi: 10.1063/1.4984131
    [10] GUCKENBERGER D J, PEZZI H M, REGIER M C, et al. Magnetic system for automated manipulation of paramagnetic particles[J]. Analytical Chemistry, 2016, 88(20): 9902-9907 doi: 10.1021/acs.analchem.6b02257
    [11] DEN DULK R C, SCHMIDT K A, SABATTÉ G, et al. Magneto-capillary valve for integrated purification and enrichment of nucleic acids and proteins[J]. Lab on a Chip, 2012, 13(1): 106-118 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM23128479
    [12] BORDELON H, BIRIS A S, SABLIOV C M, et al. Characterization of plasmid DNA location within chitosan/PLGA/pDNA nanoparticle complexes designed for gene delivery[J]. Journal of Nanomaterials, 2011, 2011: 952060 https://www.hindawi.com/journals/jnm/2011/952060/
    [13] YANG C, LI G. A novel magnet-actuated droplet manipula-tion platform using a floating ferrofluid film[J]. Scientific Reports, 2017, 7(1): 15705 doi: 10.1038/s41598-017-15964-8
    [14] BUSCH-VISHNIAC I J. The case for magnetically driven microactuators[J]. Sensors and Actuators A: Physical, 1992, 33(3): 207-220 doi: 10.1016/0924-4247(92)80168-3
    [15] RIDA A, FERNANDEZ V, GIJS M A M. Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field[J]. Applied Physics Letters, 2003, 83(12): 2396 doi: 10.1063/1.1613038
    [16] STROHMEIER O, EMPERLE A, ROTH G, et al. Centrifugal gas-phase transition magnetophoresis (GTM)-a generic method for automation of magnetic bead based assays on the centrifugal microfluidic platform and application to DNA purification[J]. Lab on a Chip, 2012, 13(1): 146-155 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM23142800
    [17] KIM H Y, LEE H J, KANG B H. Sliding of liquid drops down an inclined solid surface[J]. Journal of Colloid and Interface Science, 2002, 247(2): 372-380 doi: 10.1006/jcis.2001.8156
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  67
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回