留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC磨粒辅助钛合金EDM和ECM并行加工的工艺参数优化

栾晓声 孟建兵 胡益忠 董小娟 李丽 曲凌辉 张宏伟

栾晓声, 孟建兵, 胡益忠, 董小娟, 李丽, 曲凌辉, 张宏伟. SiC磨粒辅助钛合金EDM和ECM并行加工的工艺参数优化[J]. 机械科学与技术, 2021, 40(10): 1549-1554. doi: 10.13433/j.cnki.1003-8728.20200243
引用本文: 栾晓声, 孟建兵, 胡益忠, 董小娟, 李丽, 曲凌辉, 张宏伟. SiC磨粒辅助钛合金EDM和ECM并行加工的工艺参数优化[J]. 机械科学与技术, 2021, 40(10): 1549-1554. doi: 10.13433/j.cnki.1003-8728.20200243
LUAN Xiaosheng, MENG Jianbing, HU Yizhong, DONG Xiaojuan, LI Li, QU Linghui, ZHANG Hongwei. Parameters Optimization of SiC Abrasive Assisted Simultaneous EDM and ECM Machining of Titanium Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(10): 1549-1554. doi: 10.13433/j.cnki.1003-8728.20200243
Citation: LUAN Xiaosheng, MENG Jianbing, HU Yizhong, DONG Xiaojuan, LI Li, QU Linghui, ZHANG Hongwei. Parameters Optimization of SiC Abrasive Assisted Simultaneous EDM and ECM Machining of Titanium Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(10): 1549-1554. doi: 10.13433/j.cnki.1003-8728.20200243

SiC磨粒辅助钛合金EDM和ECM并行加工的工艺参数优化

doi: 10.13433/j.cnki.1003-8728.20200243
基金项目: 

山东省自然科学基金面上项目 ZR2018MEE028

详细信息
    作者简介:

    栾晓声(1996-), 硕士研究生, 研究方向为微细电加工技术, lxssdut@126.com

    通讯作者:

    孟建兵, 副教授, 硕士生导师, jianbingmeng@sdut.edu.cn

  • 中图分类号: TG661; V261.6

Parameters Optimization of SiC Abrasive Assisted Simultaneous EDM and ECM Machining of Titanium Alloy

  • 摘要: 针对钛合金的难加工特点,单纯EDM、ECM的局限性以及EDM和ECM串行加工的低效率问题,在低电阻去离子水中加入碳化硅磨粒,开展了磨粒辅助作用下的EDM和ECM并行复合加工。将材料去除率、电极损耗率和表面粗糙度作为评价指标,通过正交试验和灰关联度分析,将多工艺目标转化为单一评价指标,得到峰值电流、脉冲宽度、磨粒浓度和放电电压主要工艺参数的优化组合,并进行了试验验证。结果表明:峰值电流为1.5 A、脉冲宽度为30 μs、磨料浓度为5 g/L、放电电压为40 V的工艺参数组合所得到的电极损耗率、表面粗糙度和表面形貌都得到明显改善。
  • 图  1  实验装置示意图

    图  2  SEDCM加工原理图

    图  3  磨粒辅助SEDCM加工后的SEM对比

    表  1  工件、工具电极和磨粒的材料性能

    名称 材料 密度/(g·cm-3) 热导率/(W·(m·K)-1) 熔点/℃
    工件 Ti-6Al-4V 4.43 7.96 1 660
    工具电极 紫铜 8.96 397 1 083
    磨粒 SiC 3.2 83.6 2 700
    下载: 导出CSV

    表  2  工艺参数试验水平表

    水平 峰值电流A/A 脉冲宽度B/μs 磨粒浓度C/g·L-1 放电电压D/V
    1 1.5 15 0 30
    2 3 30 5 40
    3 4.5 60 12 50
    下载: 导出CSV

    表  3  正交试验结果

    序号 A B C D RMRR/(mg·s-1) RTWR/(mg·s-1) Ra/μm
    1 1 1 1 1 0.017 8 0.009 8 2.817
    2 1 2 2 2 0.027 2 0.008 0 2.703
    3 1 3 3 3 0.042 7 0.012 7 4.001
    4 2 1 2 3 0.054 5 0.010 0 3.226
    5 2 2 3 1 0.093 0 0.018 5 3.863
    6 2 3 1 2 0.063 7 0.012 3 4.406
    7 3 1 3 2 0.094 0 0.021 7 3.934
    8 3 2 1 3 0.096 8 0.020 2 3.717
    9 3 3 2 1 0.104 8 0.012 5 4.138
    下载: 导出CSV

    表  4  比较序列无量纲化处理结果

    序列 RMRR RTWR Ra
    1 0 0.131 4 0.067 0
    2 0.108 1 0 0
    3 0.286 2 0.343 1 0.762 2
    4 0.421 8 0.146 0 0.307 2
    5 0.864 4 0.766 4 0.681 2
    6 0.527 6 0.313 9 1
    7 0.878 2 1 0.722 8
    8 0.908 1 0.890 5 0.595 4
    9 1 0.328 5 0.842 6
    下载: 导出CSV

    表  5  灰色关联系数及灰关联度数值

    序列 RMRR RTWR Ra 灰关联度
    1 1 0.791 9 0.881 8 0.891 2
    2 0.822 2 1 1 0.940 7
    3 0.636 0 0.593 1 0.396 1 0.541 7
    4 0.542 4 0.774 0 0.619 4 0.645 3
    5 0.3665 0.394 8 0.423 3 0.394 7
    6 0.486 6 0.614 3 0.333 3 0.478 1
    7 0.362 8 0.333 3 0.408 9 0.368 3
    8 0.355 1 0.359 6 0.456 5 0.390 4
    9 0.333 3 0.603 5 0.372 4 0.436 4
    下载: 导出CSV

    表  6  针对MRR的单工艺目标平均关联度系数

    水平 A B C D
    1 0.819 4 0.635 1 0.613 9 0.566 6
    2 0.465 2 0.514 6 0.566 0 0.557 2
    3 0.350 4 0.485 3 0.485 3 0.511 2
    极差 0.469 0 0.149 8 0.158 8 0.055 4
    下载: 导出CSV

    表  7  针对TWR的单工艺目标平均关联度系数

    水平 A B C D
    1 0.795 0 0.633 1 0.588 6 0.596 7
    2 0.594 4 0.584 8 0.792 5 0.649 2
    3 0.432 1 0.603 6 0.440 4 0.575 6
    极差 0.362 9 0.048 3 0.352 1 0.073 6
    下载: 导出CSV

    表  8  针对Ra的单工艺目标平均关联度系数

    水平 A B C D
    1 0.759 3 0.636 7 0.557 2 0.559 2
    2 0.465 2 0.626 6 0663 9 0.580 7
    3 0.412 6 0.367 3 0.409 4 0.490 7
    极差 0.346 7 0.269 4 0.254 5 0.090 0
    下载: 导出CSV

    表  9  多工艺目标平均关联度系数

    水平 A B C D
    1 0.791 2 0.634 9 0.586 6 0.574 1
    2 0.506 0 0.575 3 0.674 1 0.595 7
    3 0.398 4 0.485 4 0.434 9 0.525 8
    极差 0.392 8 0.149 5 0.239 2 0.069 9
    下载: 导出CSV

    表  10  试验验证与评价指标的对比

    评价指标 A1B2C2D2 A2B1C2D3 A1B1C2D2
    RMRR 0.027 2 0.054 5 0.026 8
    RTWR 0.008 0 0.010 0 0.007 7
    Ra 2.703 3.226 2.578
    下载: 导出CSV
  • [1] 梁旭, 蔡重延, 安庆龙, 等. TC4铣削中超临界CO2混合油膜附水滴的冷却润滑性能[J]. 中国机械工程, 2020, 31(3): 328-335 doi: 10.3969/j.issn.1004-132X.2020.03.011

    LIANG X, CAI C Y, AN Q L, et al. Cooling and lubrication performance of scCO2 mixed with OoW in TC4 milling[J]. China Mechanical Engineering, 2020, 31(3): 328-335 (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.03.011
    [2] 费亚, 黄云, 邹莱, 等. 预应力砂带磨削钛合金表面完整性的试验研究[J]. 机械科学与技术, 2017, 36(7): 1063-1067 doi: 10.13433/j.cnki.1003-8728.2017.0713

    FEI Y, HUANG Y, ZOU L, et al. Experimental study on surface integrity of titanium alloy machined by prestressed abrasive belt grinding[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(7): 1063-1067 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0713
    [3] JUNG H J, HAYASAKA T, SHAMOTO E, et al. Suppression of forced vibration due to chip segmentation in ultrasonic elliptical vibration cutting of titanium alloy Ti-6Al-4V[J]. Precision Engineering, 2020, 64: 98-107. doi: 10.1016/j.precisioneng.2020.03.017
    [4] LIN M Y, TSAO C C, HUANG H H, et al. Use of the grey-Taguchi method to optimise the micro-electrical discharge machining (micro-EDM) of Ti-6Al-4V alloy[J]. International Journal of Computer Integrated Manufacturing, 2015, 28(6): 569-576 doi: 10.1080/0951192X.2014.880946
    [5] GAO P, WANG X B, LIANG Z Q, et al. Effects of machining inclination angles on microgroove quality in micro ball end milling of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2017, 92: 2725-2734 doi: 10.1007/s00170-017-0305-2
    [6] 郭妍, 贾云海, 郭建梅, 等. 基于正交试验分析的电火花放电磨削聚晶立方氮化硼复合片工艺[J]. 工具技术, 2019, 53(3): 64-68 https://www.cnki.com.cn/Article/CJFDTOTAL-GJJS201903014.htm

    GUO Y, JIA Y H, GUO J M, et al. Electrical discharge grinding polycrystalline cubic boron nitride composites based on orthogonal experiment analysis[J]. Tool Engineering, 2019, 53(3): 64-68 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJJS201903014.htm
    [7] LIU H Z, WANG Z L, WANG Y K, et al. Effect of technological parameters on the process performance of pure Al2O3 layer of Ni-Al2O3 FGMs by self-induced EDM[J]. International Journal of Advanced Manufacturing Technology, 2017, 90: 3633-3641 doi: 10.1007/s00170-016-9631-z
    [8] LIANG J F, LIAO Y S, KAO J Y, et al. Study of the EDM performance to produce a stable process and surface modification[J]. International Journal of Advanced Manufacturing Technology, 2018, 95: 1743-1750 doi: 10.1007/s00170-017-1315-9
    [9] BHAUMIK M, MAITY K. Effect of different tool materials during EDM performance of titanium grade 6 alloy[J]. Engineering Science and Technology, An International Journal, 2018, 21(3): 507-516 doi: 10.1016/j.jestch.2018.04.018
    [10] 孙树峰, 计时鸣, 谭大鹏, 等. 磨粒辅助EDM与ECM复合加工技术[J]. 机械工程学报, 2012, 48(17): 159-164 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201217024.htm

    SUN S F, JI S M, TAN D P, el al. Abrasive assisted EDM & ECM compound machining[J]. Journal of Mechanical Engineering, 2012, 48(17): 159-164 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201217024.htm
    [11] MASUZAWA T, SAKAI S. Quick finishing of WEDM products by ECM using a mate-electrode[J]. CIRP Annals, 1987, 36(1): 123-126 doi: 10.1016/S0007-8506(07)62568-2
    [12] RAMASAWMY H, BLUNT L. 3D surface topography assessment of the effect of different electrolytes during electrochemical polishing of EDM surfaces[J]. International Journal of Machine Tools and Manufacture, 2002, 42(5): 567-574 doi: 10.1016/S0890-6955(01)00154-7
    [13] NGUYEN M D, RAHMAN M, WONG Y S. Transitions of micro-EDM/SEDCM/micro-ECM milling in low-resistivity deionized water[J]. International Journal of Machine Tools and Manufacture, 2013, 69: 48-56 doi: 10.1016/j.ijmachtools.2013.03.008
    [14] YIN Q F, WANG B R, ZHANG Y B, et al. Research of lower tool electrode wear in simultaneous EDM and ECM[J]. Journal of Materials Processing Technology, 2014, 214(8): 1759-1768 doi: 10.1016/j.jmatprotec.2014.03.025
  • 加载中
图(3) / 表(10)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  39
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-29
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回