留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负泊松比基元蜂窝结构研究

刘宇 郝琪 田钰楠 毛怡

刘宇, 郝琪, 田钰楠, 毛怡. 负泊松比基元蜂窝结构研究[J]. 机械科学与技术, 2021, 40(10): 1629-1635. doi: 10.13433/j.cnki.1003-8728.20200237
引用本文: 刘宇, 郝琪, 田钰楠, 毛怡. 负泊松比基元蜂窝结构研究[J]. 机械科学与技术, 2021, 40(10): 1629-1635. doi: 10.13433/j.cnki.1003-8728.20200237
LIU Yu, HAO Qi, TIAN Yu′nan, MAO Yi. Study on Honeycomb Structure of Negative Poisson′s Ratio Element[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(10): 1629-1635. doi: 10.13433/j.cnki.1003-8728.20200237
Citation: LIU Yu, HAO Qi, TIAN Yu′nan, MAO Yi. Study on Honeycomb Structure of Negative Poisson′s Ratio Element[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(10): 1629-1635. doi: 10.13433/j.cnki.1003-8728.20200237

负泊松比基元蜂窝结构研究

doi: 10.13433/j.cnki.1003-8728.20200237
基金项目: 

国家自然科学基金项目 11502075

湖北省重点实验室创新基金项目 2015XTZX0418

湖北汽车工业学院优秀硕士学位论文培育项目 Y201915

详细信息
    作者简介:

    刘宇(1996-), 硕士研究生, 研究方向为汽车被动安全及结构优化, 1440627816@qq.com

    通讯作者:

    郝琪, 教授, 硕士生导师, 1293169789@qq.com

  • 中图分类号: TH122

Study on Honeycomb Structure of Negative Poisson′s Ratio Element

  • 摘要: 以传统凹角六边形负泊松比结构为主要参考对象,通过拓扑优化得到较为完整的负泊松比基元优化构型,并基于该构型建立了6种基元几何模型。探讨了不同蜂窝排列方式下的蜂窝结构性能差异,选取合适的排列方式对6种基元建立的蜂窝结构进行了冲击仿真研究。以吸能量、比吸能、峰值碰撞力及结构等效泊松比为评价指标,对比分析了不同基元蜂窝结构的结构性能,筛选出综合性能最优的基元结构。选取汽车前端结构,将传统凹角六边形结构及最优基元结构进行三维排列组合填充入吸能盒内,进行了汽车前端碰撞应用对比。结果表明基于拓扑优化的各基元结构在吸能效果及承载能力上皆高于传统凹角六边形结构,选取的最优基元结构在汽车前端碰撞应用中具有更好的吸能效果及负泊松比特性,其压溃距离大大降低。
  • 图  1  凹角六边形结构

    图  2  设计区域有限元模型

    图  3  基元拓扑优化结果

    图  4  优化基元几何模型

    图  5  蜂窝排列方式

    图  6  冲击仿真模型

    图  7  不同基元排列方式的应变-能量曲线

    图  8  不同基元蜂窝结构应变-吸能曲线

    图  9  不同基元蜂窝结构等效泊松比

    图  10  不同基元蜂窝结构碰撞力对比

    图  11  前端结构模型

    图  12  填充芯三维模型

    图  13  吸能曲线

    图  14  碰撞力曲线

    表  1  蜂窝排列方式数据表

    模型 等效泊松比 PCF/kN
    蜂窝方式一 -0.279 103.02
    蜂窝方式二 -0.273 55.35
    下载: 导出CSV
  • [1] LAKES R. Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235(4792): 1038-1040 doi: 10.1126/science.235.4792.1038
    [2] EVANS K E, CADDOCK B D. Microporous materials with negative Poisson's ratios. Ⅱ. Mechanisms and interpretation[J]. Journal of Physics D: Applied Physics, 1989, 22: 1883-1887 doi: 10.1088/0022-3727/22/12/013
    [3] 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用[J]. 力学进展, 2011, 41(3): 335-350 https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201103007.htm

    YANG Z C, DENG Q T. Mechanical property and application of materials and structures with negative Poisson's ratio[J]. Advances in Mechanics, 2011, 41(3): 335-350 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201103007.htm
    [4] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201813001.htm

    YU J J, XIE Y, PEI X. State-of-art of metamaterials with negative Poisson's ratio[J]. Journal of Mechanical Engineering, 2018, 54(13): 1-14 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201813001.htm
    [5] BAUGHMAN R H, SHACKLETTE J M, ZAKHIDOV A A, et al. Negative Poisson's ratios as a common feature of cubic metals[J]. Nature, 1998, 392(6674): 362-365 doi: 10.1038/32842
    [6] LI C, SHEN H S, WANG H. Nonlinear dynamic response of sandwich beams with functionally graded negative Poisson's ratio honeycomb core[J]. The European Physical Journal Plus, 2019, 134(2): 79 doi: 10.1140/epjp/i2019-12572-7
    [7] LI D, YIN J H, DONG L, et al. Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson's ratio[J]. Smart Materials and Structures, 2017, 26(2): 025014 doi: 10.1088/1361-665X/26/2/025014
    [8] QIN H X, YANG D Q. Vibration reduction design method of metamaterials with negative Poisson's ratio[J]. Journal of Materials Science, 2019, 54(22): 14038-14054 doi: 10.1007/s10853-019-03903-z
    [9] TAN H L, HE Z C, LI K X, et al. In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio[J]. Composite Structures, 2019, 229: 111415 doi: 10.1016/j.compstruct.2019.111415
    [10] WANG C Y, ZOU S C, ZHAO W Z. Multi-objective optimization of a novel crash box with a three-dimensional negative Poisson's ratio inner core[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(2): 263-275 doi: 10.1177/0954407017741780
    [11] 崔世堂, 王波, 张科. 负泊松比蜂窝面内动态压缩行为与吸能特性研究[J]. 应用力学学报, 2017, 34(5): 919-924 https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201705018.htm

    CUI S T, WANG B, ZHANG K. Mechanical behavior and energy absorption of honeycomb with negative Poisson's ratio under in-plane dynamic compression[J]. Chinese Journal of Applied Mechanics, 2017, 34(5): 919-924 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201705018.htm
    [12] QIANG G C, WANG L M, GAO Q. Dynamic crushing behaviors of four kinds of auxetic structures[R]. SAE Technical Paper, SAE, 2019
    [13] WANG C Y, WANG W W, ZHAO W Z, et al. Reliability optimization of a novel negative Poisson's ratio forepart for pedestrian protection[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(17): 2998-3012 doi: 10.1177/0954406217730441
    [14] 秦浩星, 杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4): 1014-1023 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201804031.htm

    QIN H X, YANG D Q. Functional element topology optimal method of metamaterial design with arbitrary negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 1014-1023 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201804031.htm
    [15] 王昱, 吕恩利, 王亚娟, 等. 负泊松比负热膨胀超材料微结构拓扑优化设计[J]. 上海理工大学学报, 2016, 38(6): 551-556 https://www.cnki.com.cn/Article/CJFDTOTAL-HDGY201606008.htm

    WANG Y, LYU E L, WANG Y J, et al. Topology optimization design of microstructured metamaterials with negative Poisson's ratio and negative thermal expansion[J]. Journal of University of Shanghai for Science and Technology, 2016, 38(6): 551-556 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDGY201606008.htm
    [16] QIN H X, YANG D Q, REN C H. Modelling theory of functional element design for metamaterials with arbitrary negative Poisson's ratio[J]. Computational Materials Science, 2018, 150: 121-133 doi: 10.1016/j.commatsci.2018.03.056
    [17] 侯秀慧, 尹冠生. 负泊松比蜂窝抗冲击性能分析[J]. 机械强度, 2016, 38(5): 905-910 https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201605001.htm

    HOU X H, YIN G S. Dynamic crushing performance analysis for auxetic honeycomb structure[J]. Journal of Mechanical Strength, 2016, 38(5): 905-910 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201605001.htm
    [18] 邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13): 103-109, 154 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201713018.htm

    DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson's ratio[J]. Journal of Vibration and Shock, 2017, 36(13): 103-109, 154 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201713018.htm
    [19] 卢子兴, 李康. 负泊松比蜂窝动态压溃行为的有限元模拟[J]. 机械强度, 2016, 38(6): 1237-1242 https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201606018.htm

    LU Z X, LI K. Dynamic crushing of honeycombs with a negative Poisson's ratio-a finite element study[J]. Journal of Mechanical Strength, 2016, 38(6): 1237-1242 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201606018.htm
    [20] 马芳武, 梁鸿宇, 赵颖, 等. 内凹三角形负泊松比结构耐撞性多目标优化设计[J]. 吉林大学学报, 2020, 50(1): 29-35 https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202001003.htm

    MA F W, LIANG H Y, ZHAO Y, et al. Multi-objective crashworthiness optimization design of concave triangles cell structure with negative Poisson's ratio[J]. Journal of Jilin University, 2020, 50(1): 29-35 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202001003.htm
    [21] 岑神德. 一种新型负泊松比蜂窝结构的冲击动力学研究[D]. 广州: 暨南大学, 2018 https://d.wanfangdata.com.cn/thesis/D01705515

    CEN S D. Study on impact dynamics of a new auxetic honeycomb structure[D]. Guangzhou: Jinan University, 2018 (in Chinese) https://d.wanfangdata.com.cn/thesis/D01705515
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  277
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回