留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HJI理论下滑模鲁棒控制对磁浮列车悬浮特性影响研究

佟来生 张文跃 郑文文 朱琳 徐俊起

佟来生,张文跃,郑文文, 等. HJI理论下滑模鲁棒控制对磁浮列车悬浮特性影响研究[J]. 机械科学与技术,2021,40(9):1439-1443 doi: 10.13433/j.cnki.1003-8728.20200214
引用本文: 佟来生,张文跃,郑文文, 等. HJI理论下滑模鲁棒控制对磁浮列车悬浮特性影响研究[J]. 机械科学与技术,2021,40(9):1439-1443 doi: 10.13433/j.cnki.1003-8728.20200214
TONG Laisheng, ZHANG Wenyue, ZHENG Wenwen, ZHU Lin, XU Junqi. Influence of HJI Theory Sliding Mode Robust Control on Suspension Characteristics of Maglev Train[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1439-1443. doi: 10.13433/j.cnki.1003-8728.20200214
Citation: TONG Laisheng, ZHANG Wenyue, ZHENG Wenwen, ZHU Lin, XU Junqi. Influence of HJI Theory Sliding Mode Robust Control on Suspension Characteristics of Maglev Train[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1439-1443. doi: 10.13433/j.cnki.1003-8728.20200214

HJI理论下滑模鲁棒控制对磁浮列车悬浮特性影响研究

doi: 10.13433/j.cnki.1003-8728.20200214
基金项目: “十三五”国家重点研发计划先进轨道交通重点专项(2016YFB1200601)、磁浮交通车辆系统集成湖南省重点实验室项目(2018TP1035)及湖湘青年英才项目(2019RS2061)
详细信息
    作者简介:

    佟来生(1977−),博士,研究方向为磁悬浮控制,alanatlsh@126.com

    通讯作者:

    徐俊起,高级工程师,硕士,xunjunqi@tongji.edu.cn

  • 中图分类号: TP273

Influence of HJI Theory Sliding Mode Robust Control on Suspension Characteristics of Maglev Train

  • 摘要: 针对负载扰动和轨道不平顺激励等干扰下磁浮列车悬浮系统的悬浮稳定性问题,提出了一种基于二类李雅普诺夫函数的滑模控制策略使其能够严格保证系统维持在目标悬浮间隙附近。设计了期望悬浮间隙并将其设为虚拟输入,在动力学方程中采取滑模控制算法实现悬浮误差的跟踪控制。根据垂向悬浮间隙的相应约束条件引入HJI理论和李雅普诺夫函数设计相应控制器,使其能够在各种干扰下保证悬浮稳定性。基于李雅普诺夫稳定性定理证明闭环系统稳定性,使系统在受到扰动时能够尽可能的保证悬浮精度并进行误差整定,将悬浮误差收敛到无穷小。对比了现有PID控制算法在同样工况下的悬浮性能,对比了仿真验证所提出控制律的有效性和鲁棒性。
  • 图  1  悬浮系统工作原理

    图  2  悬浮系统仿真框架结构

    图  3  轨道不平顺激励

    图  4  非线性扰动力

    图  5  跟踪性能验证

    图  6  负载扰动激励下悬浮间隙误差

  • [1] 吴祥明. 磁浮列车[M]. 上海: 上海科技出版社, 2003

    WU X M. Maglev train[M]. Shanghai: Shanghai Science and Technology Press, 2003 (in Chinese)
    [2] 陈小鸿. 城市轨道交通新技术、新系统—长沙磁浮机场快线工程[J]. 交通与运输, 2016, 32(3): 1-3 doi: 10.3969/j.issn.1671-3400.2016.03.001

    CHEN X H. New technology and system of Urban Rail Transit — Changsha maglev airport express project[J]. Traffic & Transportation, 2016, 32(3): 1-3 (in Chinese) doi: 10.3969/j.issn.1671-3400.2016.03.001
    [3] 付敬懿. 长沙中低速磁浮快线开通试运营[J]. 城市轨道交通研究, 2019, 19(6): 116

    FU J Y. Trial operation of Changsha medium and low speed maglev line[J]. Urban Mass Transit, 2019, 19(6): 116 (in Chinese)
    [4] LI J H, LI J. A practical nonlinear controller for levitation system with magnetic flux feedback[J]. Journal of Central South University, 2016, 23(7): 1729-1739 doi: 10.1007/s11771-016-3227-5
    [5] 陈琛, 徐俊起, 荣立军, 等. 轨道随机不平顺下磁浮车辆非线性动力学特性[J]. 交通运输工程学报, 2019, 19(4): 115-124 doi: 10.3969/j.issn.1671-1637.2019.04.011

    CHEN C, XU J Q, RONG L J, et al. Nonlinear dynamics characteristics of maglev vehicle under track random irregularities[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 115-124 (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.04.011
    [6] 龙志强, 薛松, 陈慧星. 基于LMI的磁浮列车悬浮系统被动容错控制[J]. 计算机仿真, 2008, 25(2): 265-268 doi: 10.3969/j.issn.1006-9348.2008.02.069

    LONG Z Q, XUE S, CHEN H X. Passive fault tolerant control for suspension system of maglev train based on LMI[J]. Computer Simulation, 2008, 25(2): 265-268 (in Chinese) doi: 10.3969/j.issn.1006-9348.2008.02.069
    [7] CHEN C, XU J Q, JI W, et al. Sliding mode robust adaptive control of Maglev vehicle's nonlinear suspension system based on flexible track: design and experiment[J]. IEEE Access, 2019, 7: 41874-41884 doi: 10.1109/ACCESS.2019.2906245
    [8] XU J Q, CHEN C, SUN Y G, et al. Nonlinear dynamic analysis of Maglev Vehicle Based on flexible guideway and random irregularity[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 60(2): 263-280 doi: 10.3233/JAE-180051
    [9] 邹逸鹏, 刘放, 庞振华, 等. 轨道不平顺激励下高速磁浮列车垂向动力学仿真[J]. 机械科学与技术, 2021, 40(2): 281-286

    ZOU Y P, LIU F, PANG Z H, et al. Vertical dynamics simulation of high speed maglev vehicle under excitation of track irregularity[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 281-286 (in Chinese)
    [10] 吴峻, 李中秀, 曾晓荣, 等. 中低速磁浮列车悬浮传感器信号传输[J]. 同济大学学报, 2020, 48(3): 392-397 doi: 10.11908/j.issn.0253-374x.19113

    WU J, LI Z X, ZENG X R, et al. Signal transmission of suspension sensor for middle-low speed maglev train[J]. Journal of Tongji University, 2020, 48(3): 392-397 (in Chinese) doi: 10.11908/j.issn.0253-374x.19113
    [11] WANG Y N, SUN W, XIANG Y Q, et al. Neural network-based robust tracking control for robots[J]. Intelligent Automation & Soft Computing, 2009, 15(2): 211-222
    [12] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 2版. 北京: 清华大学出版社, 2012

    LIU J K. Sliding mode control design and matlab simulation[M]. 2nd ed. Beijing: Tsinghua University Press, 2012 (in Chinese)
    [13] CHEN C, XU J Q, LIN G B, et al. Fuzzy adaptive control particle swarm optimization based on T-S fuzzy model of maglev vehicle suspension system[J]. Journal of Mechanical Science and Technology, 2020, 34(1): 43-54 doi: 10.1007/s12206-019-1247-4
    [14] 董达善, 陈琛, 孙友刚, 等. 非线性磁悬浮系统动力学建模与控制研究[J]. 机械设计与制造, 2019(11): 16-19, 24 doi: 10.3969/j.issn.1001-3997.2019.11.005

    DONG D S, CHEN C, SUN Y G, et al. Research on dynamics modeling and control of the nonlinear maglev system[J]. Machinery Design & Manufacture, 2019(11): 16-19, 24 (in Chinese) doi: 10.3969/j.issn.1001-3997.2019.11.005
    [15] 张瑶, 刘欣, 童桂, 等. 基于HPSO优化的磁悬浮系统分数阶控制[J]. 南京工程学院学报, 2018, 16(4): 7-12

    ZHANG Y, LIU X, TONG G, et al. Fractional-order control of magnetic levitation system based on hybrid particle swarm optimization[J]. Journal of Nanjing Institute of Technology, 2018, 16(4): 7-12 (in Chinese)
  • 加载中
图(6)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  42
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-07
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回