留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁致伸缩材料驱动的电静液作动器设计方法及性能研究

李波 张烨恒 舒亮 朱彦超 邓宏碧

李波, 张烨恒, 舒亮, 朱彦超, 邓宏碧. 磁致伸缩材料驱动的电静液作动器设计方法及性能研究[J]. 机械科学与技术, 2021, 40(8): 1272-1278. doi: 10.13433/j.cnki.1003-8728.20200206
引用本文: 李波, 张烨恒, 舒亮, 朱彦超, 邓宏碧. 磁致伸缩材料驱动的电静液作动器设计方法及性能研究[J]. 机械科学与技术, 2021, 40(8): 1272-1278. doi: 10.13433/j.cnki.1003-8728.20200206
LI Bo, ZHANG Yeheng, SHU Liang, ZHU Yanchao, DENG Hongbi. Study on Design Method and Performance of Electrostatic Hydrostatic Actuator Driven by Magnetostrictive Material[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(8): 1272-1278. doi: 10.13433/j.cnki.1003-8728.20200206
Citation: LI Bo, ZHANG Yeheng, SHU Liang, ZHU Yanchao, DENG Hongbi. Study on Design Method and Performance of Electrostatic Hydrostatic Actuator Driven by Magnetostrictive Material[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(8): 1272-1278. doi: 10.13433/j.cnki.1003-8728.20200206

磁致伸缩材料驱动的电静液作动器设计方法及性能研究

doi: 10.13433/j.cnki.1003-8728.20200206
基金项目: 

国家自然科学基金项目 51975418

详细信息
    作者简介:

    李波(1963-), 副教授, 博士, 研究方向为机械设计与制造方面的研究, whlibo163@163.com

    通讯作者:

    舒亮, 教授, 博士, shuliangalbert@163.com

  • 中图分类号: TH122;TH142

Study on Design Method and Performance of Electrostatic Hydrostatic Actuator Driven by Magnetostrictive Material

  • 摘要: M-EHA(Magnetostrictive electro hydrostatic actuator)是以GMM材料为驱动元件的一种适用于多应用场合的电静液作动器, 其性能影响因素较多, 理论分析较复杂。为能够对时间域下作动器的动态输出位移进行研究, 提出了一种新型的M-EHA的设计方法并研制了原理样机; 针对作动器试验测试过程中所涉及的相关要求, 对作动器相关结构进行了优化设计, 搭建了实验平台; 提出了一种新型的簧片阀腔体结构, 能够有效提高整个阀门性能; 设计了一种球头螺栓式预应力施加装置, 既保护了驱动单元, 又能够测试M-EHA在不同预应力下的输出性能; 在不同工作频率下对M-EHA的输出位移特性进行了试验研究, 在不同的偏置压力下对作动器的输出速度特性进行了试验研究。
  • 图  1  M-EHA基本原理图

    图  2  M-EHA磁路结构图

    图  3  泵头结构图

    图  4  预紧螺栓示意图

    图  5  悬臂梁式单向阀

    图  6  M-EHA阀口结构及其流场图

    图  7  液压缸结构图

    图  8  超磁致伸缩EHA剖面图

    图  9  M-EHA原理样机

    图  10  M-EHA关键零部件

    图  11  M-EHA试验测试平台

    图  12  不同驱动频率下M-EHA输出位移

    图  13  不同偏置压力下M-EHA输出速度的频率响应特性

    表  1  Terfenol-D棒性能参数

    性能参数 数值
    直径DTD 10 mm
    长度LTD 100 mm
    弹性模量E 25 GPa
    自由应变εf 1 300 ppm
    下载: 导出CSV
  • [1] ALLE N, HIREMATH S S, MAKARAM S, et al. Review on electro hydrostatic actuator for flight control[J]. International Journal of Fluid Power, 2016, 17(2): 125-145 doi: 10.1080/14399776.2016.1169743
    [2] 付永领, 韩旭, 杨荣荣, 等. 电动静液作动器设计方法综述[J]. 北京航空航天大学学报, 2017, 43(10): 1939-1952 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201710001.htm

    FU Y L, HAN X, YANG R R, et al. Review on design method of electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 1939-1952 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201710001.htm
    [3] JOHN S, SIROHI J, WANG G, et al. Comparison of piezoelectric, magnetostrictive and electrostrictive hybrid hydraulic actuators[C]//ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago, Illinois, USA: American Society of Mechanical Engineers, 2006: 409-418
    [4] 蔡万宠, 张建富, 郁鼎文, 等. 超磁致伸缩超声振动系统的机电转换效率研究[J]. 机械工程学报, 2017, 53(19): 52-58 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201719006.htm

    CAI W C, ZHANG J F, YU D W, et al. Research on the electromechanical conversion efficiency for giant magnetostrictive ultrasonic machining system[J]. Journal of Mechanical Engineering, 2017, 53(19): 52-58 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201719006.htm
    [5] LI Y S, ZHU Y C, WU H T, et al. Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(3): 378-388 doi: 10.1177/1045389X13498311
    [6] GERVER M J, GOLDIE J H, SWENBECK J R, et al. Magnetostrictive water pump[C]//Proceedings of SPIE 3329, Smart Structures and Materials 1998: Smart Structures and Integrated Systems. San Diego, CA, United States: SPIE, 1998: 694-705
    [7] MAUCK L D, LYNCH C S. Piezoelectric hydraulic pump development[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(10): 758-764 doi: 10.1106/HC2A-ABR9-21H8-2TJB
    [8] OATES W S, LYNCH C S. Piezoelectric hydraulic pump system dynamic model[J]. Journal of Intelligent Material Systems and Structures, 2001, 12(11): 737-744 doi: 10.1177/104538901400438037
    [9] SIROHI J, CHOPRA I. Design and development of a high pumping frequency piezoelectric-hydraulic hybrid actuator[J]. Journal of Intelligent Material Systems and Structures, 2003, 14(3): 135-147 doi: 10.1177/1045389X03014003002
    [10] KELLER C A. Novel concepts in piezohydraulic pump design[D]. Atlanta: Georgia Institute of Technology, 2004
    [11] LEE D G, OR S W, CARMAN G P. Design of a piezoelectric-hydraulic pump with active valves[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(2): 107-115 doi: 10.1177/1045389X04039730
    [12] RUPINSKY M J, DAPINO M J. Smart material electrohydrostatic actuator for intelligent transportation systems[C]//ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago, Illinois, USA: American Society of Mechanical Engineers, 2006: 721-730
    [13] SNEED R C, SMITH R R, CASH M F, et al. Development of smart material-hydraulic pumps and actuators[C]//ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago, Illinois, USA: American Society of Mechanical Engineers, 2006: 435-443
    [14] JOHN S, CADOU C, YOO J H, et al. Application of CFD in the design and analysis of a piezoelectric hydraulic pump[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(11): 967-979 doi: 10.1177/1045389X06062142
    [15] CHAUDHURI A, YOO J H, WERELEY N M. Design, test and model of a hybrid magnetostrictive hydraulic actuator[J]. Smart Materials and Structures, 2009, 18(8): 085019 doi: 10.1088/0964-1726/18/8/085019
    [16] CHAUDHURI A, WERELEY N M. Experimental validation of a hybrid electrostrictive hydraulic actuator analysis[J]. Journal of Vibration and Acoustics, 2010, 132(2): 021006 doi: 10.1115/1.4000778
    [17] CHAUDHURI A, WERELEY N M. Compact hybrid electrohydraulic actuators using smart materials: a review[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(6): 597-634 doi: 10.1177/1045389X11418862
    [18] LARSON J P, DAPINO M J. Design of a smart material electro-hydraulic actuator with improved frequency bandwidth[C]//Proceedings of SPIE 8343, Industrial and Commercial Applications of Smart Structures Technologies 2012. San Diego, California, United States: SPIE, 2012: 16
    [19] 陈龙, 朱玉川, 杨旭磊, 等. 超磁致伸缩泵驱动磁路建模及数值分析[J]. 中国机械工程, 2014, 25(6): 718-722 doi: 10.3969/j.issn.1004-132X.2014.06.002

    CHEN L, ZHU Y C, YANG X L, et al. Driving magnetic path modeling and numerical analyses in giant magnetostrictive pump[J]. China Mechanical Engineering, 2014, 25(6): 718-722 (in Chinese) doi: 10.3969/j.issn.1004-132X.2014.06.002
    [20] 杨旭磊, 朱玉川, 费尚书, 等. 超磁致伸缩电静液作动器磁场分析与优化[J]. 航空动力学报, 2016, 31(9): 2210-2217 https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201609021.htm

    YANG X L, ZHU Y C, FEI S S, et al. Magnetic field analysis and optimization of giant magnetostrictive electro-hydrostatic actuator[J]. Journal of Aerospace Power, 2016, 31(9): 2210-2217 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201609021.htm
    [21] 杨旭磊. 超磁致伸缩电静液作动器磁场与流场特性及试验研究[D]. 南京: 南京航空航天大学, 2016

    YANG X L. Research on magnetic field and flow field characteristic and experiment of giant magnetostrictive materials-based electro-hydrostatic actuator[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese)
    [22] 郭亚子. 压电叠堆驱动电静液作动器实验与模型研究[D]. 南京: 南京航空航天大学, 2017

    GUO Y Z. Model and experimental research of electro-hydrostatic actuator driven by piezoelectric stack[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese)
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  30
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-28
  • 刊出日期:  2021-10-09

目录

    /

    返回文章
    返回