留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面开孔蜂窝结构异面压缩的力学性能研究

龚曙光 肖前程 谢桂兰

龚曙光, 肖前程, 谢桂兰. 壁面开孔蜂窝结构异面压缩的力学性能研究[J]. 机械科学与技术, 2021, 40(8): 1293-1298. doi: 10.13433/j.cnki.1003-8728.20200193
引用本文: 龚曙光, 肖前程, 谢桂兰. 壁面开孔蜂窝结构异面压缩的力学性能研究[J]. 机械科学与技术, 2021, 40(8): 1293-1298. doi: 10.13433/j.cnki.1003-8728.20200193
GONG Shuguang, XIAO Qiancheng, XIE Guilan. Study on Mechanical Properties of Out-of-plane Compression for Honeycomb Structure with Holes in Wall[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(8): 1293-1298. doi: 10.13433/j.cnki.1003-8728.20200193
Citation: GONG Shuguang, XIAO Qiancheng, XIE Guilan. Study on Mechanical Properties of Out-of-plane Compression for Honeycomb Structure with Holes in Wall[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(8): 1293-1298. doi: 10.13433/j.cnki.1003-8728.20200193

壁面开孔蜂窝结构异面压缩的力学性能研究

doi: 10.13433/j.cnki.1003-8728.20200193
基金项目: 

国家自科科学基金项目 51875493

国家自科科学基金项目 51975503

详细信息
    作者简介:

    龚曙光(1964-), 教授, 博士生导师, 研究方向为多学科结构优化, CAE技术的理论与应用研究, gongsg@xtu.edu.cn

  • 中图分类号: TB332

Study on Mechanical Properties of Out-of-plane Compression for Honeycomb Structure with Holes in Wall

  • 摘要: 为探讨壁面开孔蜂窝在准静态异面压缩下的平均压缩应力, 基于简化的超折叠单元理论, 以开孔"Y"型单胞为研究对象, 推导了壁面开孔蜂窝结构的平均压缩应力计算式。通过建立不同孔边比的有限元模型, 研究了平均压缩应力计算式中延展面积的影响因子, 在尺度因子为1的情况下, 延展面积影响因子与孔边比成线性关系。通过对具有不同厚边比的壁面开孔蜂窝平均压缩应力的数值计算, 验证了理论计算式的准确性, 并探讨了孔形状和尺度因子对平均压缩应力的影响。结果表明, 壁面开孔蜂窝结构的平均压缩应力主要受绞线的变化及延展面积的影响, 平均压缩应力随孔边比的增大而减小, 当尺度因子增大时, 其延展面积会减小, 与尺度因子为1时相比, 当尺度因子增大到使压缩过程较稳定时, 平均压缩应力下降40%左右。
  • 图  1  蜂窝的几何构型

    图  2  基本折叠单元折叠过程

    图  3  基本折叠单元的延展区

    图  4  有限元模型图

    图  5  不同λ的名义应力应变曲线

    图  6  不同孔径比胞壁开孔蜂窝的变形模式

    图  7  孔边比与平均压缩应力的散点图

    图  8  孔边比延展面积影响因子散点图

    图  9  不同开孔形状的示意图

    图  10  尺度因子的定义

    图  11  不同尺度因子名义应力应变曲线图

    图  12  尺度因子平均压缩应力关系图

    表  1  平均压缩应力数值结果与理论结果对比

    孔边比 厚边比 数值解 本文理论 误差/%
    0.35 0.010 0 0.282 0.271 3.90
    0.012 5 0.389 0.378 2.82
    0.015 0 0.516 0.497 3.68
    0.50 0.010 0 0.222 0.223 -0.45
    0.012 5 0.325 0.312 4.00
    0.015 0 0.423 0.409 3.31
    0.65 0.010 0 0.168 0.172 -2.38
    0.012 5 0.242 0.240 0.82
    0.015 0 0.299 0.315 -5.07
    下载: 导出CSV

    表  2  圆孔与方孔胞壁开孔蜂窝平均压缩应力对比

    孔边比 圆孔应力/MPa 方孔应力/MPa
    0.35 0.389 0.388
    0.50 0.325 0.331
    0.65 0.242 0.238
    0.80 0.166 0.166
    下载: 导出CSV
  • [1] 程子恒, 于渤, 倪长也, 等. 多种三明治结构抗冲击作用下动态性能的比较研究[J]. 应用力学学报, 2014, 31(5): 746-751 https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201405015.htm

    CHENG Z H, YU B, NI C Y, et al. Comparative study on the dynamic performance of a variety sandwich structures under impact loading[J]. Chinese Journal of Applied Mechanics, 2014, 31(5): 746-751 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201405015.htm
    [2] ARUNKUMAR M P, PITCHAIMANI J, GANGADHARAN K V, et al. Influence of nature of core on vibro acoustic behavior of sandwich aerospace structures[J]. Aerospace Science and Technology, 2016, 56: 155-167 doi: 10.1016/j.ast.2016.07.009
    [3] 刘杰, 徐绯, 刘斌, 等. A320飞机复合材料尾翼活动面后缘设计改进的分析[J]. 机械科学与技术, 2015, 34(7): 1140-1143 doi: 10.13433/j.cnki.1003-8728.2015.0735

    LIU J, XU F, LIU B, et al. Analysis of improved design for composite rudder and elevator of A320[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(7): 1140-1143 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2015.0735
    [4] 王钰堃, 毛贺, 韩宝坤, 等. 铝蜂窝"Y"形单元准静态压溃有限元模拟研究[J]. 包装工程, 2018, 39(11): 88-95 https://www.cnki.com.cn/Article/CJFDTOTAL-BZGC201811018.htm

    WANG Y K, MAO H, HAN B K, et al. Quasi-static crushing finite element simulation on aluminum honeycomb "Y" shaped cell[J]. Packaging Engineering, 2018, 39(11): 88-95 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZGC201811018.htm
    [5] WIERZBICKI T. Crushing analysis of metal honeycombs[J]. International Journal of Impact Engineering, 1983, 1(2): 157-174 doi: 10.1016/0734-743X(83)90004-0
    [6] CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4): 287-306 doi: 10.1016/S0263-8231(01)00006-4
    [7] BAI Z H, GUO H R, JIANG B H, et al. A study on the mean crushing strength of hexagonal multi-cell thin-walled structures[J]. Thin-Walled Structures, 2014, 80: 38-45 doi: 10.1016/j.tws.2014.02.024
    [8] LIU H, YU Q N, ZHANG Z C, et al. Two-equation method for heat transfer efficiency in metal honeycombs: an analytical solution[J]. International Journal of Heat and Mass Transfer, 2016, 97: 201-210 doi: 10.1016/j.ijheatmasstransfer.2016.01.020
    [9] 张志远, 迟润强, 庞宝君, 等. 蜂窝夹芯板与Whipple结构对撞击能量吸收与耗散的特性比较[J]. 应用力学学报, 2016, 33(5): 754-759 https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201605005.htm

    ZHANG Z Y, CHI R Q, PANG B J, et al. Characteristic comparison of energy absorbing and dissipating of honeycomb panel and Whipple structure in hypervelocity impact[J]. Chinese Journal of Applied Mechanics, 2016, 33(5): 754-759 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201605005.htm
    [10] 董永进, 朱光武. 真实蜂巢的力学分析和航天载荷结构仿生设计[J]. 宇航学报, 2016, 37(3): 262-267 https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201603003.htm

    DONG Y J, ZHU G W. Mechanical analysis and bionic structure design of astronautic payloads based on natural honeycomb[J]. Journal of Astronautics, 2016, 37(3): 262-267 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201603003.htm
    [11] 顾卫平, 骆卫东, 童文, 等. 复合材料蜂窝夹层板低速冲击损伤模拟及实验研究[J]. 机械科学与技术, 2013, 32(7): 1017-1021 https://journals.nwpu.edu.cn/jxkxyjs/article/id/5236

    GU W P, LUO W D, TONG W, et al. Numerical simulation and experiment on low velocity impacting damage of composite honeycomb sandwich[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(7): 1017-1021 (in Chinese) https://journals.nwpu.edu.cn/jxkxyjs/article/id/5236
    [12] WANG Z J, QIN Q H, CHEN S J, et al. Compressive crushing of novel aluminum hexagonal honeycombs with perforations: experimental and numerical investigations[J]. International Journal of Solids and Structures, 2017, 126-127: 187-195 doi: 10.1016/j.ijsolstr.2017.08.005
    [13] WANG Z J, QIN Q H, WANG F F, et al. Quasi-static crush behavior of aluminum hexagonal honeycomb with perforated cell walls[J]. Key Engineering Materials, 2013, 535-536: 422-425 doi: 10.4028/www.scientific.net/KEM.535-536.422
    [14] 夏元明, 张威, 崔天宁, 等. 金属多级类蜂窝的压溃行为研究[J]. 力学学报, 2019, 51(3): 873-883 https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201903020.htm

    XIA Y M, ZHANG W, CUI T N, et al. Investigation on crushing behavior of metal honeycomb-like hierarchical structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 873-883 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201903020.htm
    [15] OFTADEH R, HAGHPANAH B, VELLA D, et al. Optimal fractal-like hierarchical honeycombs[J]. Physical Review Letters, 2014, 113(10): 104301 doi: 10.1103/PhysRevLett.113.104301
    [16] ZHANG X, ZHANG H. Energy absorption of multi-cell stub columns under axial compression[J]. Thin-Walled Structures, 2013, 68: 156-163 doi: 10.1016/j.tws.2013.03.014
    [17] SANTOSA S P, WIERZBICKI T, HANSSEN A G, et al. Experimental and numerical studies of foam-filled sections[J]. International Journal of Impact Engineering, 2000, 24(5): 509-534 doi: 10.1016/S0734-743X(99)00036-6
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  46
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-17
  • 刊出日期:  2021-10-09

目录

    /

    返回文章
    返回