留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

足踝形态与弹性护具压力分析及应用研究

张春强 吉晓民 薛艳敏 胡钢

张春强, 吉晓民, 薛艳敏, 胡钢. 足踝形态与弹性护具压力分析及应用研究[J]. 机械科学与技术, 2020, 39(11): 1676-1684. doi: 10.13433/j.cnki.1003-8728.20200186
引用本文: 张春强, 吉晓民, 薛艳敏, 胡钢. 足踝形态与弹性护具压力分析及应用研究[J]. 机械科学与技术, 2020, 39(11): 1676-1684. doi: 10.13433/j.cnki.1003-8728.20200186
Zhang Chunqiang, Ji Xiaomin, Xue Yanmin, Hu Gang. Analysis of Ankle Shape and Pressure of Elastic Tube Bandage and Application[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1676-1684. doi: 10.13433/j.cnki.1003-8728.20200186
Citation: Zhang Chunqiang, Ji Xiaomin, Xue Yanmin, Hu Gang. Analysis of Ankle Shape and Pressure of Elastic Tube Bandage and Application[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1676-1684. doi: 10.13433/j.cnki.1003-8728.20200186

足踝形态与弹性护具压力分析及应用研究

doi: 10.13433/j.cnki.1003-8728.20200186
详细信息
    作者简介:

    张春强(1980-), 副教授, 博士研究生, 研究方向为机械设计及理论, cqsay@xaut.edu.cn

    通讯作者:

    吉晓民, 教授, 博士, jixm@xaut.edu.cn

  • 中图分类号: TG156

Analysis of Ankle Shape and Pressure of Elastic Tube Bandage and Application

  • 摘要: 弹性护踝为足踝提供一定的压力而起到保护作用,但是压力过大或是分布不均会带来不舒适性,为提高弹性护踝的舒适性,本研究扫描了306个足踝样本数据,分析弹性护踝织物经纬线与足踝形态曲线之间的映射关系,通过凸闭曲线的方式构建弹性护踝相应的形态曲线,确立足踝形态与弹性护踝形态以及织物拉、压力之间的关系。根据扫描样本数据,建立足踝和弹性织物的标准模型,通过与标准模型的比例系数,将足踝尺寸划分为9个类型组。以特征曲线为代表计算了不同足踝尺寸类型的最大压力及相应的位置,结果显示6个适合的护踝尺寸,同时找出弹性护踝对足踝产生的极小压力区域。结合影响压力变化的织物弹性系数和织物伸长量要素,提出形态变化的方法增加相应位置所需压力,从而消除压力分布不均的问题。
  • 图  1  踝形态特征点

    图  2  直筒型弹性护踝织物结构对应的踝模型UV曲线

    图  3  U特征曲线

    图  4  踝和织物的U向特征曲线曲率图(*织物曲线)

    图  5  U4*曲线型值点

    图  6  特征曲线曲率Ks>0.05和Ks < 0.005的型值点位置

    图  7  X-M图形

    图  8  “8”字缠绕绷带织物与足踝形态映射关系

    图  9  曲率极小区域

    表  1  特征点定义

    编号 特征点
    定义
    1 趾尖点 足坐标系中x值最大的点。
    2 脚后跟点 足坐标系中x值最小的点。
    3 第1跖趾关节突出点 第1跖趾关节突出点, 位于内侧足弓结束的位置。
    4 第5跖趾关节突出点 第5跖趾关节突出点, 位于外侧足弓结束的位置。
    5 足弓点 脚底平面足弓线最里面的点。
    6 足弓最高点 足弓曲线最高位置的点。
    7 脚背点 脚背面上距离足弓点最近的点。
    8 胫前下点 脚背面上位于足和腿的交叉处的拐点。
    9 内踝突出点 胫骨内踝最突出点。
    10 外踝突出点 腓骨外踝最突出点。
    11 腿围前点 小腿最小维长最前端的点, 即小腿最小维长平面上x值最大的点。
    12 腿围后点 小腿最小维长最后端的点, 即小腿最小维长平面上x值最小的点。
    下载: 导出CSV

    表  2  特征曲线型值点位置曲率Ks(LU2(8)=300 mm, C=1)

    Ks
    U4* U5* U6(7)* U8* U2* U10* U9* U11(12)*
    0.028 0.056 0.053 0.064 0.073 0.067 0.076 0.061
    0.044 0.065 0.065 0.060 0.030 0.068 0.051 0.052
    0.056 0.023 0.027 0.015 0.016 0.022 0.015 0.043
    0.030 0.015 0.009 0.012 0.022 0.003 0.010 0.034
    0.029 0.016 0.016 0.017 0.020 0.013 0.012 0.045
    0.020 0.020 0.018 0.028 0.034 0.032 0.031 0.031
    0.022 0.017 0.017 0.011 0.021 0.061 0.068 0.012
    0.090 0.034 0.030 0.005 0.002 0.040 0.033 0.004
    0.066 0.041 0.030 0.001 0.000 0.016 0.024 0.032
    0.042 0.037 0.027 0.000 0.000 0.005 0.000 0.037
    0.060 0.012 0.013 0.000 0.000 0.000 0.000 0.013
    0.023 0.007 0.005 0.001 0.000 0.000 0.000 0.000
    0.009 0.015 0.019 0.033 0.000 0.000 0.000 0.002
    0.000 0.017 0.018 0.039 0.000 0.000 0.000 0.010
    0.000 0.050 0.048 0.037 0.027 0.000 0.000 0.008
    0.000 0.040 0.049 0.040 0.059 0.000 0.000 0.036
    0.000 0.007 0.002 0.026 0.047 0.036 0.041 0.067
    0.000 0.003 0.000 0.024 0.040 0.070 0.090 0.064
    Ks(A) 0.000 0.001 0.002 0.031 0.056 0.089 0.116 0.083
    0.000 0.007 0.016 0.035 0.065 0.096 0.040 0.070
    0.006 0.044 0.072 0.032 0.033 0.010 0.000 0.038
    0.016 0.079 0.059 0.030 0.009 0.000 0.000 0.004
    0.060 0.041 0.026 0.028 0.001 0.000 0.000 0.000
    0.110 0.065 0.056 0.008 0.000 0.000 0.000 0.008
    0.123 0.033 0.030 0.000 0.000 0.000 0.000 0.039
    0.088 0.011 0.001 0.000 0.000 0.017 0.056 0.040
    0.016 0.000 0.000 0.000 0.000 0.061 0.050 0.020
    0.003 0.011 0.000 0.009 0.013 0.025 0.018 0.011
    0.000 0.014 0.016 0.005 0.018 0.026 0.024 0.014
    0.000 0.005 0.011 0.002 0.023 0.018 0.011 0.020
    0.000 0.017 0.002 0.006 0.019 0.002 0.003 0.018
    0.000 0.015 0.022 0.017 0.001 0.002 0.005 0.034
    0.000 0.019 0.012 0.008 0.037 0.006 0.013 0.027
    0.019 0.032 0.023 0.051 0.036 0.032 0.035 0.039
    0.021 0.018 0.035 0.019 0.018 0.027 0.023 0.038
    0.012 0.032 0.016 0.034 0.056 0.026 0.036 0.037
    下载: 导出CSV

    表  3  特征曲线型值点对应的Ksmax

    曲线 U4* U5* U6(7)* U8* U2* U10* U9* U11(12)*
    Ls/mm 226.7 246.2 256.3 311.5 291.4 260.2 252.8 207.8
    型值点 a4, 24 a5, 21 a6, 20 a8, 0 a2, 0 a10, 19 a9, 18 a11, 18
    Ksmax 0.123 0.079 0.072 0.064 0.073 0.096 0.116 0.083
    下载: 导出CSV

    表  4  不同足类型a8, 0位置在不同X值时的压力

    X/mm 压力/kPa
    类型1 类型2 类型3 类型4 类型5 类型6 类型7 类型8 类型9
    140 9.606 9.984 10.337 10.674 10.980 11.266 11.543 11.795 12.032
    150 8.867 9.273 9.651 10.012 10.340 10.647 10.943 11.213 11.467
    160 8.129 8.562 8.965 9.351 9.700 10.027 10.343 10.631 10.902
    170 7.391 7.851 8.279 8.689 9.060 9.408 9.743 10.049 10.337
    180 6.653 7.140 7.593 8.027 8.420 8.788 9.143 9.467 9.772
    190 5.915 6.429 6.907 7.365 7.780 8.168 8.544 8.885 9.207
    200 5.176 5.718 6.221 6.703 7.140 7.549 7.944 8.304 8.643
    210 4.438 5.007 5.535 6.041 6.500 6.929 7.344 7.722 8.078
    220 3.700 4.296 4.849 5.380 5.860 6.310 6.744 7.140 7.513
    下载: 导出CSV

    表  5  不同足类型a9, 18位置在不同X值时的压力

    X/mm 压力/kPa
    类型1 类型2 类型3 类型4 类型5 类型6 类型7 类型8 类型9
    140 10.589 11.276 11.914 12.526 13.080 13.599 14.100 14.556 14.986
    150 9.251 9.987 10.670 11.326 11.920 12.476 13.013 13.502 13.963
    160 7.913 8.698 9.427 10.127 10.760 11.353 11.925 12.447 12.939
    170 6.575 7.409 8.184 8.927 9.600 10.230 10.838 11.393 11.915
    180 5.237 6.120 6.941 7.727 8.440 9.107 9.751 10.338 10.891
    190 3.899 4.831 5.697 6.528 7.280 7.984 8.664 9.284 9.867
    200 2.561 3.542 4.454 5.328 6.120 6.861 7.577 8.229 8.843
    210 1.223 2.253 3.211 4.129 4.960 5.738 6.490 7.175 7.820
    220 -0.115 0.964 1.967 2.929 3.800 4.615 5.402 6.120 6.796
    下载: 导出CSV
  • [1] Fong D T P, Hong Y L, Chan L K, et al. A systematic review on ankle injury and ankle sprain in sports[J]. Sports Medicine, 2007, 37(1):73-94
    [2] Kristianslund E, Bahr R, Krosshaug T. Kinematics and kinetics of an accidental lateral ankle sprain[J]. Journal of Biomechanics, 2011, 44(14):2576-2578 doi: 10.1016/j.jbiomech.2011.07.014
    [3] Mok K M, Fong D T P P, Krosshaug T, et al. Kinematics analysis of ankle inversion ligamentous sprain injuries in sports:2 cases during the 2008 Beijing Olympics[J]. American Journal of Sports Medicine, 2011, 39(7):1548-1552 doi: 10.1177/0363546511399384
    [4] Panagiotakis E, Mok K M, Fong D T P, et al. Biomechanical analysis of ankle ligamentous sprain injury cases from televised basketball games:understanding when, how and why ligament failure occurs[J]. Journal of Science and Medicine in Sport, 2017, 20(12):1057-1061 doi: 10.1016/j.jsams.2017.05.006
    [5] Fong D T P, Ha S C W, Mok K M, et al. Kinematics analysis of ankle inversion ligamentous sprain injuries in sports:five cases from televised tennis competitions[J]. American Journal of Sports Medicine, 2012, 40(11):2627-2632 doi: 10.1177/0363546512458259
    [6] Kaminski T W, Hertel J, Amendola N, et al. National athletic trainers' association position statement:Conservative management and prevention of ankle sprains in athletes[J]. Journal of Athletic Training, 2013, 48(4):528-545 doi: 10.4085/1062-6050-48.4.02
    [7] Barelds I, van den Broek A G, Huisstede B M A. Ankle bracing is effective for primary and secondary prevention of acute ankle injuries in athletes:A systematic review and meta-analyses[J]. Sports Medicine, 2018, 48(12):2775-2784 doi: 10.1007/s40279-018-0993-2
    [8] Zwiers R, Blankevoort L, Swier C W A, et al. Taping techniques and braces in football[M]//d'Hooghe P, Kerkhoffs G. The Ankle in Football. Paris: Springer, 2014: 287-310
    [9] Dizon J M R, Reyes J J B. A systematic review on the effectiveness of external ankle supports in the prevention of inversion ankle sprains among elite and recreational players[J]. Journal of Science & Medicine in Sport, 2010, 13(3):309-317
    [10] Choisne J, Hoch M C, Bawab S, et al. The effects of a semi-rigid ankle brace on a simulated isolated subtalar joint instability[J]. Journal of Orthopaedic Research, 2013, 31(12):1869-1875 doi: 10.1002/jor.22468
    [11] Sitler M, Ryan J, Wheeler B, et al. The efficacy of a semirigid ankle stabilizer to reduce acute ankle injuries in basketball:a randomized clinical study at west point[J]. The American Journal of Sports Medicine, 1994, 22(4):454-461 doi: 10.1177/036354659402200404
    [12] Hill J, Howatson G, Van Someren K, et al. Compression garments and recovery from exercise-induced muscle damage:a meta-analysis[J]. British Journal of Sports Medicine, 2014, 48(18):1340-1346 doi: 10.1136/bjsports-2013-092456
    [13] Engel F A, Holmberg H C, Sperlich B. Is there evidence that runners can benefit from wearing compression clothing?[J]. Sports Medicine, 2016, 46(12):1939-1952 doi: 10.1007/s40279-016-0546-5
    [14] Kemmler W, von Stengel S, Köckritz C, et al. Effect of compression stockings on running performance in men runners[J]. Journal of Strength and Conditioning Research, 2009, 23(1):101-105
    [15] Miyamoto N, Hirata K, Mitsukawa N, et al. Effect of pressure intensity of graduated elastic compression stocking on muscle fatigue following calf-raise exercise[J]. Journal of Electromyography and Kinesiology, 2011, 21(2):249-254 doi: 10.1016/j.jelekin.2010.08.006
    [16] Pavailler S, Forestier N, Hintzy F, et al. A soft ankle brace increases soleus Hoffman reflex amplitude but does not modify presynaptic inhibition during upright standing[J]. Gait & Posture, 2016, 49:448-450
    [17] Shima N, Maeda A, Hirohashi K. Delayed latency of peroneal reflex to sudden inversion with ankle taping or bracing[J]. International Journal of Sports Medicine, 2005, 26(6):476-480 doi: 10.1055/s-2004-821064
    [18] Papadopoulos E S, Nicolopoulos C, Baldoukas A, et al. The effect of different ankle brace-skin interface application pressures on the electromyographic peroneus longus reaction time[J]. The Foot, 2005, 15(4):175-179 doi: 10.1016/j.foot.2005.06.002
    [19] Papadopoulos E S, Nikolopoulos C, Badekas A, et al. The effect of different skin-ankle brace application pressures on quiet single-limb balance and electromyographic activation onset of lower limb muscles[J]. BMC Musculoskeletal Disorders, 2007, 8(1):89 doi: 10.1186/1471-2474-8-89
    [20] Pratt J, West G. Pressure garments:a manual on their design and fabrication[M]. Oxford:Butterworth-Heinemann, 1995
    [21] Meinders M J, de Lange A, Netten P M, et al. Microcirculation in the footsole as a function of mechanical pressure[J]. Clinical Biomechanics, 1996, 11(7):410-417 doi: 10.1016/0268-0033(96)00021-6
    [22] Convery P, Buis A W P. Socket/stump interface dynamic pressure distributions recorded during the prosthetic stance phase of gait of a trans-tibial amputee wearing a hydrocast socket[J]. Prosthetics and Orthotics International, 1999, 23(2):107-112 doi: 10.3109/03093649909071621
    [23] Vuurberg G, Hoorntje A, Wink L M, et al. Diagnosis, treatment and prevention of ankle sprains:Update of an evidence-based clinical guideline[J]. British Journal of Sports Medicine, 2018, 52(15):956 doi: 10.1136/bjsports-2017-098106
    [24] Kirk W Jr, Ibrahim S M. Fundamental relationship of fabric extensibility to anthropometric requirements and garment performance[J]. Textile Research Journal, 1966, 36(1):37-47 doi: 10.1177/004051756603600105
    [25] Lee Y C, Wang M J. Taiwanese adult foot shape classification using 3D scanning data[J]. Ergonomics, 2015, 58(3):513-523
    [26] Irzmańska E, Okrasa M. Evaluation of protective footwear fit for older workers (60+):A case study using 3D scanning technique[J]. International Journal of Industrial Ergonomics, 2018, 67:27-31 doi: 10.1016/j.ergon.2018.04.001
    [27] Wang C S. An analysis and evaluation of fitness for shoe lasts and human feet[J]. Computers in Industry, 2010, 61(6):532-540 doi: 10.1016/j.compind.2010.03.003
    [28] Baek S Y, Lee K. Statistical foot-shape analysis for mass-customisation of footwear[J]. International Journal of Computer Aided Engineering and Technology, 2016, 8(1-2):80-98
    [29] Witana C P, Xiong S P, Zhao J H, et al. Foot measurements from three-dimensional scans:A comparison and evaluation of different methods[J]. International Journal of Industrial Ergonomics, 2006, 36(9):789-807 doi: 10.1016/j.ergon.2006.06.004
    [30] Yeh I C, Lin C H, Sorkine O, et al. Template-based 3D model fitting using dual-domain relaxation[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(8):1178-1190 doi: 10.1109/TVCG.2010.124
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  35
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-14
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回