留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型空间大行程微夹持器的设计与分析

伍威 赵纪宇 丁冰晓 李杨民

伍威, 赵纪宇, 丁冰晓, 李杨民. 新型空间大行程微夹持器的设计与分析[J]. 机械科学与技术, 2021, 40(7): 1079-1084. doi: 10.13433/j.cnki.1003-8728.20200181
引用本文: 伍威, 赵纪宇, 丁冰晓, 李杨民. 新型空间大行程微夹持器的设计与分析[J]. 机械科学与技术, 2021, 40(7): 1079-1084. doi: 10.13433/j.cnki.1003-8728.20200181
WU Wei, ZHAO Jiyu, DING Bingxiao, LI Yangmin. Design and Analysis on a Novel Type of Spatial Micro-gripper with Large Displacement[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1079-1084. doi: 10.13433/j.cnki.1003-8728.20200181
Citation: WU Wei, ZHAO Jiyu, DING Bingxiao, LI Yangmin. Design and Analysis on a Novel Type of Spatial Micro-gripper with Large Displacement[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1079-1084. doi: 10.13433/j.cnki.1003-8728.20200181

新型空间大行程微夹持器的设计与分析

doi: 10.13433/j.cnki.1003-8728.20200181
基金项目: 

国家自然科学基金项目 51575544

湖湘高层次人才聚集工程 2019RS1066

湖南省教育厅科学研究项目 19C1520

详细信息
    作者简介:

    伍威(2000-), 本科生, 研究方向为机械设计制造及其自动化, 403402735@qq.com

    通讯作者:

    丁冰晓, 讲师, 硕士生导师, 博士, bingxding@hotmail.com

  • 中图分类号: TH113

Design and Analysis on a Novel Type of Spatial Micro-gripper with Large Displacement

  • 摘要: 针对传统微夹持器夹持范围小、易对物体造成损伤等不足, 基于桥式放大机构和杠杆原理设计了一种新型微夹持器。该微夹持器不仅能完成对不同尺寸大小微物体的微夹持操作, 还能避免在微夹持操作过程中对微小物体造成损伤或脱落, 以及适应不规则微小物体的夹持操作。阐明了夹持器的结构设计原理, 根据微夹持臂的工作原理建立了数学模型, 计算了微夹持臂的位移放大率。此外, 使用有限元分析软件ANSYS Workbench进行了静力学和动力学仿真, 并验证其夹持的有效范围。结果表明微夹持臂有较大的位移输出, 且其放大率的理论计算值与仿真分析值吻合良好。
  • 图  1  新型微夹持器

    图  2  微夹持臂及底座

    图  3  桥式机构工作原理图

    图  4  微夹持臂运动分析图

    图  5  物体夹持示意图

    图  6  微夹持臂1应变及应力图

    图  7  微夹持臂2应变及应力图

    图  8  两组微夹持臂放大率的理论与仿真值比较

    图  9  微夹持器在无载荷时的模态形状分析

    表  1  空载模式形状分析的频率

    模态 频率/Hz 模态 频率/Hz
    1阶 137.5 3阶 153.26
    2阶 137.5 4阶 153.26
    下载: 导出CSV
  • [1] 于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13): 53-68 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201513006.htm

    YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201513006.htm
    [2] 王念峰, 张志远, 张宪民, 等. 三种两自由度柔顺精密定位平台的性能对比与分析[J]. 机械工程学报, 2018, 54(13): 102-109 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201813012.htm

    WANG N F, ZHANG Z Y, ZHANG X M, et al. Performance comparison and analysis of three 2-DOF compliant precision positioning stages[J]. Journal of Mechanical Engineering, 2018, 54(13): 102-109 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201813012.htm
    [3] 李海. 精密定位平台视觉运动追踪与伺服控制研究[D]. 广州: 华南理工大学, 2018

    LI H. Vision-based motion tracking and servo control of the precision positioning stages[D]. Guangzhou: South China University of Technology, 2018 (in Chinese)
    [4] 李祥春, 李杨民, 丁冰晓, 等. 新型3-PRC柔性并联微操作平台的研究[J]. 机械科学与技术, 2018, 37(5): 709-714 doi: 10.13433/j.cnki.1003-8728.2018.0509

    LI X C, LI Y M, DING B X, et al. An investigation on a novel 3-PRC compliant parallel micromanipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 709-714 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2018.0509
    [5] GARCÉS-SCHRÖDER M, LEESTER-SCHÄDEL M, SCHULZ M, et al. Micro-Gripper: a new concept for a monolithic single-cell manipulation device[J]. Sensors and Actuators A: Physical, 2015, 236: 130-139 doi: 10.1016/j.sna.2015.10.024
    [6] 王振禄, 沈雪瑾, 陈晓阳. 基于MEMS工艺的电热致动器研究进展[J]. 半导体光电, 2015, 36(3): 341-347, 355 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201503001.htm

    WANG Z L, SHEN X J, CHEN X Y. Latest development of electrothermal actuator based on MEMS process[J]. Semiconductor Optoelectronics, 2015, 36(3): 341-347, 355 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201503001.htm
    [7] 牛凯, 叶雄英, 周兆英, 等. M EM S微梁静电致动器的力学特性研究[J]. 压电与声光, 2005, 27(5): 507-509, 513 https://www.cnki.com.cn/Article/CJFDTOTAL-YDSG200505014.htm

    NIU K, YE X Y, ZHOU Z Y, et al. Research on mechanical properties of MEMS cantilever actuator based on the reduced order modeling[J]. Piezoelectrics & Acoustooptics, 2005, 27(5): 507-509, 513 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YDSG200505014.htm
    [8] 郑丽云, 沈剑英, 王鹏飞, 等. 用于压电驱动器位移放大的柔性铰链放大机构研究[J]. 科技创新与应用, 2018(7): 21-22, 24 https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201807008.htm

    ZHENG L Y, SHEN J Y, WANG P F, et al. Study on flexible hinge amplifier used in piezoelectric actuator displacement amplification[J]. Technology Innovation and Application, 2018(7): 21-22, 24 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201807008.htm
    [9] 杨圣, 刘东伟. 纳米电磁致动器的发展[J]. 中国机械工程, 2001, 12(11): 1316-1319 doi: 10.3321/j.issn:1004-132X.2001.11.033

    YANG S, LIU D W. Development of nanometer electromagnetic actuators[J]. China Mechanical Engineering, 2001, 12(11): 1316-1319 (in Chinese) doi: 10.3321/j.issn:1004-132X.2001.11.033
    [10] 卢琴琴. 基于形状记忆合金(SMA)的柔性致动器设计[D]. 西安: 西安电子科技大学, 2018

    LU Q Q. Design of flexible actuator based on shape memory alloy[D]. Xi'an: Xidian University, 2018 (in Chinese)
    [11] WU Z G, CHEN M. Model and study of clamping force for micro-gripper with PZT-driven[C]//Proceedings of the WRC Symposium on Advanced Robotics and Automation. Beijing, China: IEEE, 2019: 74-79
    [12] 郝永平, 董福禄, 张嘉易, 等. 基于MEMS机构装配的微夹持器研究[J]. 中国机械工程, 2014, 25(5): 596-601 doi: 10.3969/j.issn.1004-132X.2014.05.006

    HAO Y P, DONG F L, ZHANG J Y, et al. Study on micro-gripper based on MEMS mechanism assembly[J]. China Mechanical Engineering, 2014, 25(5): 596-601 (in Chinese) doi: 10.3969/j.issn.1004-132X.2014.05.006
    [13] CHEN W L, ZHANG X M, FATIKOW S. Design, modeling and test of a novel compliant orthogonal displacement amplification mechanism for the compact micro-grasping system[J]. Microsystem Technologies, 2017, 23(7): 2485-2498 doi: 10.1007/s00542-016-2989-x
    [14] XU Q S. Structure design of a new compliant gripper based on Scott-Russell mechanism[C]//IEEE International Conference on Robotics and Biomimetics. Shenzhen, China: IEEE, 2013: 1623-1628
    [15] JOSHI R S, MITRA A C, KANDHARKAR S R. Design and analysis of compliant micro-gripper using pseudo rigid body model(PRBM)[J]. Materials Today: Proceedings, 2017, 4(2): 1701-1707 doi: 10.1016/j.matpr.2017.02.010
    [16] NAH S K, ZHONG Z W. A microgripper using piezoelectric actuation for micro-object manipulation[J]. Sensors and Actuators A: Physical, 2007, 133(1): 218-224 doi: 10.1016/j.sna.2006.03.014
    [17] KIVI A R, AZIZI S. On the dynamics of a micro-gripper subjected to electrostatic and piezoelectric excitations[J]. International Journal of Non-Linear Mechanics, 2015, 77: 183-192 doi: 10.1016/j.ijnonlinmec.2015.07.012
    [18] 蔡建阳. 压电式微夹持器设计、建模与实验[D]. 赣州: 江西理工大学, 2017

    CAI J Y. Design, modeling and experiment of micro-gripper based on piezo actuator[D]. Ganzhou: Jiangxi University of Science and Technology, 2017 (in Chinese)
    [19] LI J Y, YAN P, LI J M. Displacement amplification ratio modeling of bridge-type nano-positioners with input displacement loss[J]. Mechanical Sciences, 2019, 10(1): 299-307 doi: 10.5194/ms-10-299-2019
    [20] KOSEKI Y, TANIKAWA T, KOYACHI N, et al. Kinematic analysis of a translational 3-d. o. f. micro-parallel mechanism using the matrix method[J]. Advanced Robotics, 2002, 16(3): 251-264 doi: 10.1163/156855302760121927
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  31
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-04
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回