留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴式磁流变假肢膝关节设计及CT+PD轨迹跟踪控制

易锋 胡国良 梅鑫 顾瑞恒

易锋, 胡国良, 梅鑫, 顾瑞恒. 单轴式磁流变假肢膝关节设计及CT+PD轨迹跟踪控制[J]. 机械科学与技术, 2021, 40(7): 985-992. doi: 10.13433/j.cnki.1003-8728.20200177
引用本文: 易锋, 胡国良, 梅鑫, 顾瑞恒. 单轴式磁流变假肢膝关节设计及CT+PD轨迹跟踪控制[J]. 机械科学与技术, 2021, 40(7): 985-992. doi: 10.13433/j.cnki.1003-8728.20200177
YI Feng, HU Guoliang, MEI Xin, GU Ruiheng. Designing Uniaxial Magnetorheological Damper-based Prosthetic Knee and CT+PD Trajectory Tracking Control[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 985-992. doi: 10.13433/j.cnki.1003-8728.20200177
Citation: YI Feng, HU Guoliang, MEI Xin, GU Ruiheng. Designing Uniaxial Magnetorheological Damper-based Prosthetic Knee and CT+PD Trajectory Tracking Control[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 985-992. doi: 10.13433/j.cnki.1003-8728.20200177

单轴式磁流变假肢膝关节设计及CT+PD轨迹跟踪控制

doi: 10.13433/j.cnki.1003-8728.20200177
基金项目: 

国家自然科学基金项目 51765016

详细信息
    作者简介:

    易锋(1996-), 硕士研究生, 研究方向为磁流变假肢膝关节设计及控制, 18702626959@qq.com

    通讯作者:

    胡国良, 教授, 博士生导师, glhu@ecjtu.edu.cn

  • 中图分类号: TG156

Designing Uniaxial Magnetorheological Damper-based Prosthetic Knee and CT+PD Trajectory Tracking Control

  • 摘要: 针对传统假肢膝关节存在阻尼无法连续可调、仿生性不佳及价格高昂等问题,提出一种以磁流变阻尼器(Magnetorheological damper, MRD)为控制器件的新型磁流变假肢膝关节(Magnetorheological damper-based prosthetic knee, MRPK)。基于健康人在平地行走的步态数据,对单轴式MRPK进行结构设计,并建立其处于摆动相内的动力学模型,得到MRD的阻尼力需大于208.6 N及行程需大于33.3 mm。对MRD进行结构设计并利用ANSYS对其进行电磁场仿真分析,同时建立MRD的正向、逆向力学模型并得到其性能曲线。采用联合仿真的方法建立磁流变假肢膝关节控制系统,设计CT+PD轨迹跟踪控制器并与PD控制器对比,仿真得到CT+PD控制器的最大误差为-4.6°,而PD控制器的最大误差为12.3°。初步证明了CT+PD轨迹跟踪控制对MRPK摆动控制的有效性。
  • 图  1  正常人平地行走时髋关节、膝关节摆动角度

    图  2  大腿和小腿摆动角度θ1θ2曲线

    图  3  磁流变假肢三维模型图

    图  4  磁流变假肢结构示意图

    图  5  MRD长度lmrd曲线

    图  6  MRPK所需阻尼力F曲线

    图  7  剪切阀式MRD结构示意图

    图  8  MRD磁力线分布图

    图  9  MRD的磁感应分布图

    图  10  磁感应强度B与电流I曲线

    图  11  剪切应力τy与电流I曲线

    图  12  阻尼力-位移曲线

    图  13  阻尼力-速度曲线

    图  14  控制电流I曲线

    图  15  CT+PD轨迹跟踪控制原理图

    图  16  MRPK控制系统原理图

    图  17  控制电流I曲线

    图  18  阻尼力F曲线

    图  19  小腿摆动角度曲线

    图  20  小腿摆动角度误差曲线

    表  1  大腿及小腿摆动角度拟合参数

    i a1i a2i a3i b1i b2i b3i
    1 9.169 23.88 0.582 2.798 0.495 -2.289
    2 9.522 14.17 0.041 12.5 1.494 2.525
    3 23.54 37.13 3.735 5.175 2.398 1.184
    4 10.37 3.573 9.817 19.38 -6.663 -2.905
    5 -13.07 3.119 5.362 24.8 0.200 2 -2.367
    6 1.833 1.89 19.13 27.25 -6.367 -0.363
    下载: 导出CSV

    表  2  磁流变假肢关键参数

    参数名称 数值
    大腿质量m1 1 kg
    小腿质量m2 2.4 kg
    大腿长度l1 460 mm
    小腿长度l2 430 mm
    大腿质心到髋关节长度lp1 360 mm
    小腿质心到膝关节长度lp2 165 mm
    下载: 导出CSV

    表  3  MRD关键参数

    参数名称 数值
    缸体内径D 30 mm
    活塞头直径d1 28 mm
    活塞杆直径d2 18 mm
    有效阻尼长度L 10 mm
    黏度η 0.8 Pa·s
    匝数N 100
    下载: 导出CSV
  • [1] LARA-BARRIOS C M, BLANCO-ORTEGA A, GUZMÁN-VALDIVIA C H, et al. Literature review and current trends on transfemoral powered prosthetics[J]. Advanced Robotics, 2018, 32(2): 51-62 doi: 10.1080/01691864.2017.1402704
    [2] OBA T, KADONE H, HASSAN M, et al. Robotic ankle-foot orthosis with a variable viscosity link using MR fluid[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 495-504 doi: 10.1109/TMECH.2019.2894406
    [3] MOUSAVI S H, SAYYAADI H. Optimization and testing of a new prototype hybrid MR brake with arc form surface as a prosthetic knee[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3): 1204-1214 doi: 10.1109/TMECH.2018.2820065
    [4] 胡国良, 刘丰硕, 刘浩. 位移差动自感式磁流变阻尼器设计与试验[J]. 农业机械学报, 2017, 48(11): 383-389, 397 doi: 10.6041/j.issn.1000-1298.2017.11.047

    HU G L, LIU F S, LIU H. Design and experiment of novel dispalcement differential self-induced magnetorheological damper[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 383-389, 397 (in Chinese) doi: 10.6041/j.issn.1000-1298.2017.11.047
    [5] ANDRADE R M, FILHO A B, VIMIEIRO C B s, et al. Optimal design and torque control of an active magnetorheological prosthetic knee[J]. Smart Materials and Structures, 2018, 27(10): 105031 doi: 10.1088/1361-665X/aadd5c
    [6] PARK J, YOON G H, KANG J W, et al. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes[J]. Smart Materials and Structures, 2016, 25(8): 085009 doi: 10.1088/0964-1726/25/8/085009
    [7] THIELE J, WESTEBBE B, BELLMANN M, et al. Designs and performance of microprocessor-controlled knee joints[J]. Biomedical Engineering, 2014, 59(1): 65-77 doi: 10.1515/bmt-2013-0069
    [8] XIE H L, LIANG Z Z, LI F, et al. The knee joint design and control of above-knee intelligent bionic leg based on magneto-rheological damper[J]. International Journal of Automation and Computing, 2010, 7(3): 277-282 doi: 10.1007/s11633-010-0503-y
    [9] XU L, WANG D H, FU Q, et al. A novel four-bar linkage prosthetic knee based on magnetorheological effect: principle, structure, simulation and control[J]. Smart Materials and Structures, 2016, 25(11): 115007 doi: 10.1088/0964-1726/25/11/115007
    [10] XU L, WANG D H, FU Q, et al. A novel motion platform system for testing prosthetic knees[J]. Measurement, 2019, 146: 139-151 doi: 10.1016/j.measurement.2019.04.073
    [11] BERNAL-TORRES M G, MEDELLÍN-CASTILLO H I, ARELLANO-GONZÁLEZ J C. Design and control of a new biomimetic transfemoral knee prosthesis using an echo-control scheme[J]. Journal of Healthcare Engineering, 2018, 2018: 8783642 http://europepmc.org/articles/PMC5952505/
    [12] 赵晓东, 刘作军, 苟斌, 等. 下肢假肢斜坡路况运动控制策略分析[J]. 决策与控制, 2019, 34(6): 1160-1168 https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201906005.htm

    ZHAO X D, LIU Z J, GOU B, et al. Analysis of slope motion control strategy of lower limb prostheses[J]. Control and Decision, 2019, 34(6): 1160-1168 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201906005.htm
    [13] NANDI G C, IJSPEERT A J, CHAKRABORTY P, et al. Development of adaptive modular active leg (AMAL) using bipedal robotics technology[J]. Robotics and Autonomous Systems, 2009, 57(6-7): 603-616 doi: 10.1016/j.robot.2009.02.002
    [14] FU Q, WANG D H, XU L, et al. A magnetorheological damper-based prosthetic knee (MRPK) and sliding mode tracking control method for an MRPK-based lower limb prosthesis[J]. Smart Materials and Structures, 2017, 26(4): 045030 doi: 10.1088/1361-665X/aa61f1
    [15] ARNEZ-PANIAGUA V, RIFAÏ H, AMIRAT Y. Adaptive control of an actuated ankle foot orthosis for paretic patients[J]. Control Engineering Practice, 2019, 90: 207-220 doi: 10.1016/j.conengprac.2019.06.003
    [16] EKKACHAI K, NILKHAMHANG I. Swing phase control of semi-active prosthetic knee using neural network predictive control with particle swarm optimization[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(11): 1169-1178 doi: 10.1109/TNSRE.2016.2521686
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  85
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-17
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回