留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物对旋流器内油滴聚结与分离效率的影响

夏宏泽 赵立新 刘琳 王羽 章宝玲 张爽

夏宏泽, 赵立新, 刘琳, 王羽, 章宝玲, 张爽. 聚合物对旋流器内油滴聚结与分离效率的影响[J]. 机械科学与技术, 2021, 40(7): 993-999. doi: 10.13433/j.cnki.1003-8728.20200168
引用本文: 夏宏泽, 赵立新, 刘琳, 王羽, 章宝玲, 张爽. 聚合物对旋流器内油滴聚结与分离效率的影响[J]. 机械科学与技术, 2021, 40(7): 993-999. doi: 10.13433/j.cnki.1003-8728.20200168
XIA Hongze, ZHAO Lixin, LIU Lin, WANG Yu, ZHANG Baoling, ZHANG Shuang. Effects of Polymer on Coalescence and Separation Efficiency of Oil Droplets in Hydrocyclon[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 993-999. doi: 10.13433/j.cnki.1003-8728.20200168
Citation: XIA Hongze, ZHAO Lixin, LIU Lin, WANG Yu, ZHANG Baoling, ZHANG Shuang. Effects of Polymer on Coalescence and Separation Efficiency of Oil Droplets in Hydrocyclon[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 993-999. doi: 10.13433/j.cnki.1003-8728.20200168

聚合物对旋流器内油滴聚结与分离效率的影响

doi: 10.13433/j.cnki.1003-8728.20200168
基金项目: 

国家"863"计划课题项目 2012AA061303

东北石油大学"龙江学者"配套科研经费项目 LJ201803

详细信息
    作者简介:

    夏宏泽(1993-), 硕士研究生, 研究方向为流体机械及工程, xiahongze1@163.com

    通讯作者:

    赵立新, 教授, 博士, Lx_zhao@126.com

  • 中图分类号: TK72

Effects of Polymer on Coalescence and Separation Efficiency of Oil Droplets in Hydrocyclon

  • 摘要: 为了研究聚合物对水力旋流器内油滴聚结与分离效率的影响规律, 以螺旋导流内锥式旋流器为研究对象, 利用群体平衡模型(PBM)方法对不含聚与含聚0.5‰工况下油水两相在旋流器内的速度场、黏度场、油滴聚结、运移特性及分离效率进行数值分析, 并通过实验验证。结果表明: 聚合物的加入增大了水相黏度, 使油滴在旋流器内最大停留时间与轴向运动距离增加, 增加了油滴碰撞聚结的机会, 但降低轴心处油滴向上运动的轴向速度, 使油滴无法快速从溢流口流出, 最终从底流口流出, 增加油水分离的难度。与不含聚时相比, 含聚0.5‰工况下, 轴心处的油滴粒径与含油体积分数较高, 但简化分离效率由99.79%降低至94.72%。通过马尔文粒度仪对两种工况下入口与出口的油滴粒径进行测试, 含聚0.5‰时溢流与底流口油滴粒径高于不含聚时, 验证了模拟的准确性。
  • 图  1  螺旋导流内锥式旋流器结构图

    图  2  流体域网格划分

    图  3  不同截面不同含聚浓度下的切向速度分布曲线图

    图  4  不同截面不同含聚浓度下的轴向速度分布曲线图

    图  5  S1截面不同含聚浓度下表观黏度曲线图

    图  6  油滴粒径与体积分数分布云图

    图  7  不同含聚浓度下溢流与底流口油滴粒径频数图

    图  8  不同含聚浓度下油滴在旋流器内运移轨迹对比图

    图  9  不同含聚浓度下油滴粒径随时间变化

    图  10  试验工艺流程图

    图  11  不同含聚浓度下入口与出口粒径分布

  • [1] 徐保蕊, 蒋明虎, 赵立新. 采出液黏度对三相分离旋流器性能的影响[J]. 机械工程学报, 2017, 53(8): 175-182 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201708025.htm

    XU B R, JIANG M H, ZHAO L X. Effect of production fluid viscosity on the performance of three phase separation hydrocyclone[J]. Journal of Mechanical Engineering, 2017, 53(8): 175-182 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201708025.htm
    [2] 李星蓉, 佟乐, 王璐, 等. 聚合物驱油技术综述[J]. 当代化工, 2017, 46(6): 1228-1230, 1234 doi: 10.3969/j.issn.1671-0460.2017.06.068

    LI X R, TONG L, WANG L, et al. Review of polymer flooding technology[J]. Contemporary Chemical Industry, 2017, 46(6): 1228-1230, 1234 (in Chinese) doi: 10.3969/j.issn.1671-0460.2017.06.068
    [3] 叶芳芳, 李长刚, 聂丽君, 等. 聚合物驱采出水处理技术研究进展[J]. 山东化工, 2019, 48(16): 90-91, 95 doi: 10.3969/j.issn.1008-021X.2019.16.038

    YE F F, LI C G, NEI L J, et al. Research on water characteristics and treatment technology of sewage from polymer flooding[J]. Shandong Chemical Industry, 2019, 48(16): 90-91, 95 (in Chinese) doi: 10.3969/j.issn.1008-021X.2019.16.038
    [4] 蒋明虎, 赵立新, 李枫, 等. 旋流分离技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2000: 10

    JIANG M H, ZHAO L X, LI F, et al. Cyclonic separation technology[M]. Harbin: Harbin Institute of Technology Press, 2000: 10 (in Chinese)
    [5] 李枫, 熊峰, 刘彩玉, 等. 油滴聚并破碎行为对水力旋流器分离性能的影响[J]. 石油机械, 2019, 47(6): 73-78 https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201906014.htm

    LI F, XIONG F, LIU C Y, et al. Effect of oil droplet coalescence and breakup behavior on separation performance of hydrocyclone[J]. China Petroleum Machinery, 2019, 47(6): 73-78 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201906014.htm
    [6] NOROOZI S, HASHEMABADI S H, CHAMKHA A J. Numerical analysis of drops coalescence and breakage effects on de-oiling hydrocyclone performance[J]. Separation Science and Technology, 2013, 48(7): 991-1002 doi: 10.1080/01496395.2012.752750
    [7] 王振波, 马艺, 金有海. 流量对导叶式旋流管内油滴聚结破碎影响的数值模拟[J]. 环境工程学报, 2010, 4(9): 2156-2160 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201009048.htm

    WANG Z B, MA Y, JIN Y H. Simulation of effects of flow rate on coalescence and breakup in vane-guided hydrocyclone[J]. Chinese Journal of Environmental Engineering, 2010, 4(9): 2156-2160 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201009048.htm
    [8] 吕凤霞, 杨贺, 袁惠新, 等. 液-液分离水力旋流器油滴破碎与聚并的数值模拟[J]. 石油机械, 2017, 45(11): 71-76 https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201711015.htm

    LV F X, YANG H, YUAN H X, et al. Numerical simulation of droplet breakup and coalescence in liquid-liquid separation hydrocyclone[J]. China Petroleum Machinery, 2017, 45(11): 71-76 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201711015.htm
    [9] 邢雷, 蒋明虎, 张勇, 等. 入口形式对旋流器内油滴聚结特性影响研究[J]. 高校化学工程学报, 2018, 32(6): 1322-1331 doi: 10.3969/j.issn.1003-9015.2018.06.011

    XING L, JIANG M H, ZHANG Y, et al. Effects of inlet structure on oil droplet coalescence in hydrocyclone[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 1322-1331 (in Chinese) doi: 10.3969/j.issn.1003-9015.2018.06.011
    [10] 蔡圃, 王博. 水力旋流器内非牛顿流体多相流场的数值模拟[J]. 化工学报, 2012, 63(11): 3460-3469 doi: 10.3969/j.issn.0438-1157.2012.11.012

    CAI P, WANG B. Numerical simulation of multiphase flow field of non-Newtonian fluid in hydrocyclone[J]. CIESC Journal, 2012, 63(11): 3460-3469 (in Chinese) doi: 10.3969/j.issn.0438-1157.2012.11.012
    [11] 杨玄. 非牛顿流体在旋流器中流动特性的数值模拟[D]. 青岛: 中国石油大学, 2010: 62-63

    YANG X. Numerical simulation of flow characteristics of non-Newtonian fluid in a hydrocyclone[D]. Qingdao: China University of Petroleum, 2010: 62-63 (in Chinese)
    [12] PADHI M, MANGADODDY N, SREENIVAS T, et al. Study on multi-component particle behaviour in a hydrocyclone classifier using experimental and computational fluid dynamics techniques[J]. Separation and Purification Technology, 2019, 229: 115698 doi: 10.1016/j.seppur.2019.115698
    [13] WANG C X, JI C, ZOU J. Simulation and experiment on transitional behaviours of multiphase flow in a hydrocyclone[J]. The Canadian Journal of Chemical Engineering, 2015, 93(10): 1802-1811 doi: 10.1002/cjce.22274
    [14] SANYAL J, MARCHISIO D L, FOX R O, et al. On the comparison between population balance models for CFD simulation of bubble columns[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5063-5072 doi: 10.1021/ie049555j
    [15] DIEMER R B, OLSON J H. A moment methodology for coagulation and breakage problems: Part 2-moment models and distribution reconstruction[J]. Chemical Engineering Science, 2002, 57(12): 2211-2228 doi: 10.1016/S0009-2509(02)00112-4
    [16] 高清河, 王超, 钱慧娟, 等. 聚驱采出水中残余聚合物特性及分子聚集形态[J]. 大庆石油地质与开发, 2018, 37(3): 109-113 https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201803019.htm

    GAO Q H, WANG C, QIAN H J, et al. Properties and molecular aggregate configurations of the residual polymer in the produced water of polymer flooding[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37(3): 109-113 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201803019.htm
    [17] 王振波, 马艺, 金有海. 导叶式旋流器内油滴的聚结破碎及影响因素[J]. 化工学报, 2011, 62(2): 399-406 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201102018.htm

    WANG Z B, MA Y, JIN Y H. Droplet coalescence and breakup and its influence factors in vane-guided hydrocyclone[J]. CIESC Journal, 2011, 62(2): 399-406 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201102018.htm
  • 加载中
图(11)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  33
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回