留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定向内冷方法在高温合金铣削加工中的应用

彭锐涛 刘波 童佳威 唐新姿 降皓鉴

彭锐涛, 刘波, 童佳威, 唐新姿, 降皓鉴. 定向内冷方法在高温合金铣削加工中的应用[J]. 机械科学与技术, 2021, 40(6): 921-927. doi: 10.13433/j.cnki.1003-8728.20200164
引用本文: 彭锐涛, 刘波, 童佳威, 唐新姿, 降皓鉴. 定向内冷方法在高温合金铣削加工中的应用[J]. 机械科学与技术, 2021, 40(6): 921-927. doi: 10.13433/j.cnki.1003-8728.20200164
PENG Ruitao, LIU Bo, TONG Jiawei, TANG Xinzi, JIANG Haojian. Application of Directional Internal-cooling Method in Milling Process of Superalloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 921-927. doi: 10.13433/j.cnki.1003-8728.20200164
Citation: PENG Ruitao, LIU Bo, TONG Jiawei, TANG Xinzi, JIANG Haojian. Application of Directional Internal-cooling Method in Milling Process of Superalloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 921-927. doi: 10.13433/j.cnki.1003-8728.20200164

定向内冷方法在高温合金铣削加工中的应用

doi: 10.13433/j.cnki.1003-8728.20200164
基金项目: 

国家自然科学基金项目 51975504

湖南省教育厅优秀青年项目 19B539

详细信息
    作者简介:

    彭锐涛(1982-), 教授, 博士生导师, 研究方向为高性能制造与高精传动, pengruitao@xtu.edu.cn

  • 中图分类号: TH501

Application of Directional Internal-cooling Method in Milling Process of Superalloy

  • 摘要: 针对浇注冷却铣削镍基高温合金时因供液不充分产生的过热问题, 采用定向内冷方法改善铣削换热。采用计算流体动力学方法分析了定向内冷流场特性, 结果表明: 定向内冷可保证切削液准确集中喷射至切削区并改善换热。开展了浇注冷却、定向内冷的端铣试验, 实验结果表明: 在相同铣削参数下, 定向内冷具有更好的换热性能, 且随供液压力增加冷却效率增强, 当压力为10 bar时, 铣削温度、表面粗糙度和加工硬化分别降低32.2%、19.8%和11.9%, 表面残余压应力增加105.52 MPa, 获得了更规整的加工表面。
  • 图  1  定向内冷铣铣刀

    图  2  定向内冷铣削流场模型

    图  3  铣刀壁面流体的网格模型

    图  4  不同供液压力条件下切削液流线分布图

    图  5  定向内冷供液压力对切削液喷射速度的影响

    图  6  定向内冷铣削试验平台

    图  7  铣削系统

    图  8  不同供液方式下切削液喷射情况

    图  9  GH4169工件

    图  10  不同冷却条件对铣削温度的影响

    图  11  不同冷却条件对表面粗糙度的影响

    图  12  不同冷却条件对表面残余应力的影响

    图  13  不同冷却条件对表面显微硬度的影响

    图  14  不同冷却条件下工件表面形貌(×200)

    表  1  水基半合成切削液物理特性[13]

    参数名称及单位 取值
    密度/(kg·m-3) 990
    导热系数/(W·(m·K)-1) 0.533
    运动黏度/(m2·s-1) 1.27×10-6
    黏度/(Pa·s) 1.26×10-3
    比热容/(J·(kg·K)-1) 4 118.8
    下载: 导出CSV

    表  2  不同冷却条件下切削液的对流传热系数

    冷却条件 取值
    浇注冷却 h=5 230 W/(m2·K)[15]
    定向内冷 P=2 bar, h=23 994 W/(m2·K)
    P=4 bar, h=28 753 W/(m2·K)
    P=6 bar, h=31 935 W/(m2·K)
    P=8 bar, h=34 392 W/(m2·K)
    P=10 bar, h=36 470 W/(m2·K)
    下载: 导出CSV
  • [1] THELLAPUTTA G R, CHANDRA P S, RAO C S P. Machinability of nickel based superalloys: a review[J]. Materials Today: Proceedings, 2017, 4(2): 3712-3721 doi: 10.1016/j.matpr.2017.02.266
    [2] MOHSAN A U H, LIU Z Q, PADHY G K. A review on the progress towards improvement in surface integrity of Inconel 718 under high pressure and flood cooling conditions[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4): 107-125 doi: 10.1007/s00170-016-9737-3
    [3] KLOCKE F, DÖBBELER B, LAKNER T. Influence of cooling nozzle orientation on the machinability of TiAl6V4 and 42CrMo4+QT in rough milling[J]. Procedia CIRP, 2018, 77: 66-69 doi: 10.1016/j.procir.2018.08.217
    [4] NANDY A K, PAUL S. Effect of coolant pressure, nozzle diameter, impingement angle and spot distance in high pressure cooling with neat oil in turning Ti-6Al-4V[J]. Machining Science and Technology, 2008, 12(4): 445-473 doi: 10.1080/10910340802518603
    [5] WANG C D, CHEN M, AN Q L, et al. Tool wear performance in face milling Inconel 182 using minimum quantity lubrication with different nozzle positions[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(3): 557-565 doi: 10.1007/s12541-014-0371-4
    [6] THAKUR A, GANGOPADHYAY S. State-of-the-art in surface integrity in machining of nickel-based super alloys[J]. International Journal of Machine Tools and Manufacture, 2016, 100: 25-54 doi: 10.1016/j.ijmachtools.2015.10.001
    [7] WEN L H, LI G H, YIN N X, et al. Simulation research on tool temperature field in high speed inner cooling milling[C]//Proceedings of the 2017 International Conference on Advances in Mechanical Design. Singapore: Springer, 2018: 1025-1035
    [8] SIMUNOVIC K, SIMUNOVIC G, SARIC T. Single and multiple goal optimization of structural steel face milling process considering different methods of cooling/lubricating[J]. Journal of Cleaner Production, 2015, 94: 321-329 doi: 10.1016/j.jclepro.2015.02.015
    [9] ISLAM A K, MIA M, DHAR N R. Effects of internal cooling by cryogenic on the machinability of hardened steel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 10-20 doi: 10.1007/s00170-016-9373-y
    [10] PENG R T, HUANG X F, TANG X Z, et al. Performance of a pressurized internal-cooling slotted grinding wheel system[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5-8): 2239-2254 doi: 10.1007/s00170-017-1014-6
    [11] 彭锐涛, 李仲平, 唐新姿, 等. 磨粒排布对加压内冷却砂轮磨削性能的影响[J]. 机械科学与技术, 2018, 37(4): 586-591 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201804016.htm

    PENG R T, LI Z P, TANG X Z, et al. Effect of abrasive arraying forms on the grinding performance of a pressurized internal-cooling grinding wheel[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4): 586-591 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201804016.htm
    [12] OEZKAYA E, BEER N, BIERMANN D. Experimental studies and CFD simulation of the internal cooling conditions when drilling Inconel 718[J]. International Journal of Machine Tools and Manufacture, 2016, 108: 52-65 http://www.sciencedirect.com/science/article/pii/S0890695516300633
    [13] SAMUEL J, RAFIEE J, DHIMAN P, et al. Graphene colloidal suspensions as high performance semi-synthetic metal-working fluids[J]. The Journal of Physical Chemistry C, 2011, 115(8): 3410-3415 doi: 10.1021/jp110885n
    [14] CHILDS T H C, MAEKAWA K, MAULIK P. Effects of coolant on temperature distribution in metal machining[J]. Materials Science and Technology, 1988, 4(11): 1006-1019 doi: 10.1179/mst.1988.4.11.1006
    [15] KURGIN S, DASCH J M, SIMON D L, et al. Evaluation of the convective heat transfer coefficient for minimum quantity lubrication (MQL)[J]. Industrial Lubrication and Tribology, 2012, 64(6): 376-386 doi: 10.1108/00368791211262516
    [16] COURBON C, SAJN V, KRAMAR D, et al. Investigation of machining performance in high pressure jet assisted turning of Inconel 718: a numerical model[J]. Journal of Materials Processing Technology, 2011, 211(11): 1834-1851 http://www.sciencedirect.com/science/article/pii/S0924013611001762
    [17] SHET C, DENG X M, BAYOUMI A E. Finite element simulation of high-pressure water-jet assisted metal cutting[J]. International Journal of Mechanical Sciences, 2003, 45(6-7): 1201-1228 http://www.sciencedirect.com/science/article/pii/S0020740303001425
    [18] PENG R T, LIU K F, TANG X Z, et al. Effect of prestress on cutting of nickel-based superalloy GH4169[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-2): 813-825 http://www.researchgate.net/publication/327949213_Effect_of_prestress_on_cutting_of_nickel-based_superalloy_GH4169
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  53
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-01
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回