留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小半径曲线钢轨非对称打磨目标型面优化

王亮 向伟彬 刘宏达 罗显光

王亮, 向伟彬, 刘宏达, 罗显光. 小半径曲线钢轨非对称打磨目标型面优化[J]. 机械科学与技术, 2021, 40(6): 949-954. doi: 10.13433/j.cnki.1003-8728.20200163
引用本文: 王亮, 向伟彬, 刘宏达, 罗显光. 小半径曲线钢轨非对称打磨目标型面优化[J]. 机械科学与技术, 2021, 40(6): 949-954. doi: 10.13433/j.cnki.1003-8728.20200163
WANG Liang, XIANG Weibin, LIU Hongda, LUO Xianguang. Target Profile Optimization of Asymmetrical Grinding for Rail with Sharp-radius Curve[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 949-954. doi: 10.13433/j.cnki.1003-8728.20200163
Citation: WANG Liang, XIANG Weibin, LIU Hongda, LUO Xianguang. Target Profile Optimization of Asymmetrical Grinding for Rail with Sharp-radius Curve[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 949-954. doi: 10.13433/j.cnki.1003-8728.20200163

小半径曲线钢轨非对称打磨目标型面优化

doi: 10.13433/j.cnki.1003-8728.20200163
基金项目: 

国家重点研发计划“先进轨道交通”重点专项 2018YFB120160403

详细信息
    作者简介:

    王亮(1982-), 高级工程师, 硕士研究生, 研究方向为城市轨道交通运维生产及技术管理, 282652189@qq.com

    通讯作者:

    刘宏达,工程师,博士,932368911@qq.com

  • 中图分类号: TG156

Target Profile Optimization of Asymmetrical Grinding for Rail with Sharp-radius Curve

  • 摘要: 小半径曲线钢轨非对称打磨能够减少轨头侧磨,增加轮对导向能力,对非对称打磨目标型面优化,能够提高打磨质量,进一步改善轨道车辆通过小半径曲线时的轮轨接触性能和轮对导向能力。利用NURBS曲线构建了基于可调权因子的钢轨非对称打磨区域轨头曲线参数化模型,建立了以轮轨接触性能和轮对曲线通过能力Kriging代理模型为目标函数的非对称打磨目标型面多目标优化模型。采用NSGA-Ⅱ算法对可调权因子进行多目标优化,得到了优化的钢轨非对称打磨目标型面。优化结果表明,车辆的轮轨接触性能和轮对曲线通过能力得到明显改善。
  • 图  1  基于3次NURBS曲线的轨头曲线参数化模型

    图  2  小半径曲线非对称打磨区域

    图  3  w16w17w18不同取值时钢轨打磨区域轨头曲线对比

    图  4  接触应力σ和滚动半径差Δr的Kriging代理模型

    图  5  基于NSAG-Ⅱ的可调权因子寻优插值过程

    图  6  可调权因子w16w17w18的Pareto非劣解

    图  7  优化的非对称打磨目标型面

    图  8  优化前后导向轮对轮轨接触性能与导向能力对比

    表  1  打磨区域可调权因子及其取值范围

    序号 可调权因子 当前值 上限 下限
    1 w16 1 2 0
    2 w17 1 2 0
    3 w18 1 2 0
    下载: 导出CSV

    表  2  Kriging代理模型训练样本

    序号 w16 w17 w18 非对称打磨性能指标
    σ Δr
    1 1.952 49 0.541 903 0.318 814 1 921.74 8.813
    2 1.308 123 0.232 827 0.142 763 1 980.65 8.947
    3 1.183 405 1.680 745 1.809 266 2 097.39 8.251
    29 0.288 095 0.754 156 1.122 051 2 277.86 8.237
    30 1.536 933 1.828 776 0.849 437 2 018.11 8.593
    下载: 导出CSV

    表  3  可调权因子初始值与优化结果

    可调权因子 初始值 优化结果
    w16 1 0.910
    w17 1 0.324
    w18 1 0.580
    下载: 导出CSV
  • [1] CUERVO P A, SANTA J F, TORO A. Correlations between wear mechanisms and rail grinding operations in a commercial railroad[J]. Tribology International, 2015, 82: 265-273 doi: 10.1016/j.triboint.2014.06.025
    [2] CRAVEN N, BEWES O G, FENECH B A, et al. Responding to the Environmental Noise Directive by demonstrating the benefits of rail grinding on the Great Britain′s railway network[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227(6): 668-676 doi: 10.1177/0954409713494948
    [3] 肖杰灵, 刘学毅. 钢轨非对称廓型的设计方法[J]. 西南交通大学学报, 2010, 45(3): 361-365 doi: 10.3969/j.issn.0258-2724.2010.03.007

    XIAO J L, LIU X Y. Design method of rail asymmetric silhouette[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 361-365 (in Chinese) doi: 10.3969/j.issn.0258-2724.2010.03.007
    [4] SROBA P, MAGEL E, PRAHL F. RT and S: improved profiles need special grinding[J]. Railway Track and Structures, 2004, 100(12): 26-28 http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Railway%20Track%20and%20Structures&atitle=Improved%20profiles%20need%20special%20grinding
    [5] 贾晋中, 司道林. 朔黄铁路小半径曲线轨道钢轨打磨目标型面研究[J]. 中国铁道科学, 2014, 35(4): 15-21 doi: 10.3969/j.issn.1001-4632.2014.04.03

    JIA J Z, SI D L. Target profile of rail grinding for small radius curve of Shuohuang railway[J]. China Railway Science, 2014, 35(4): 15-21 (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.04.03
    [6] DOIH, MIYAMOTO T, FURUKAWA A, et al. A study on relationship between rail grinding and flange climbing of railway vehicle at low speed in curve[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 2011, 77(781): 3325-3336 doi: 10.1299/kikaic.77.3325
    [7] 周骏, 刘林芽, 万鹏. 客运专线铁路曲线段钢轨型面优化[J]. 铁道标准设计, 2014, 58(7): 20-23 https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201407006.htm

    ZHOU J, LIU L Y, WAN P. Optimization of rail profile in curved section of railway passenger dedicated line[J]. Railway Standard Design, 2014, 58(7): 20-23 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201407006.htm
    [8] 周清跃, 张银花, 田常海, 等. 60N钢轨的廓型设计及试验研究[J]. 中国铁道科学, 2014, 35(2): 128-135 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201402022.htm

    ZHOU Q Y, ZHANG Y H, TIAN C H, et al. Profile design and test study of 60N rail[J]. China Railway Science, 2014, 35(2): 128-135 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201402022.htm
    [9] ADACHI M, MATSUMOTO A. Improvement of curving performance by expansion of gauge widening and additional measures[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2012, 226(2): 203-215 doi: 10.1177/0954409711408974
    [10] ASHOFTEH R S. Calculating the contact stress resulting from lateral movement of the wheel on rail by applying hertz theory[J]. International Journal of Railway, 2013, 6(4): 148-154 doi: 10.7782/IJR.2013.6.4.148
    [11] 蔡安江, 杜金健, 宋仁杰, 等. 五轴加工刀具轨迹NURBS插补技术的研究[J]. 机械科学与技术, 2017, 36(3): 402-408 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201703013.htm

    CAI A J, DU J J, SONG R J, et al. Study on NURBS interpolation technology of five-axis machining tool path[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 402-408 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201703013.htm
    [12] ROSHANIAN J, EBRAHIMI M. Latin hypercube sampling applied to reliability-based multidisciplinary design optimization of a launch vehicle[J]. Aerospace Science and Technology, 2013, 28(1): 297-304 doi: 10.1016/j.ast.2012.11.010
    [13] ESPATH L F R, BRAUN A L, AWRUCH A M, et al. NURBS-based three-dimensional analysis of geometrically nonlinear elastic structures[J]. European Journal of Mechanics-A/Solids, 2014, 47: 373-390 doi: 10.1016/j.euromechsol.2014.05.005
    [14] LEE J, KIM J. Kriging-based approximate optimization of high-speed train nose shape for reducing micropressure wave[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2007, 221(2): 263-270 doi: 10.1243/0954409JRRT110
    [15] ZHU P, PAN F, CHEN W, et al. Lightweight design of vehicle parameters under crashworthiness using conservative surrogates[J]. Computers in Industry, 2013, 64(3): 280-289 doi: 10.1016/j.compind.2012.11.004
    [16] BANDYOPADHYAY S, BHATTACHARYA R. Solving multi-objective parallel machine scheduling problem by a modified NSGA-Ⅱ[J]. Applied Mathematical Modelling, 2013, 37(10-11): 6718-6729 http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204111583786.html
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  63
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-28
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回