留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盾构工程实测数据时序性质分析与掘进速率预测

杨凯弘 张茜 周思阳

杨凯弘, 张茜, 周思阳. 盾构工程实测数据时序性质分析与掘进速率预测[J]. 机械科学与技术, 2021, 40(6): 835-839. doi: 10.13433/j.cnki.1003-8728.20200161
引用本文: 杨凯弘, 张茜, 周思阳. 盾构工程实测数据时序性质分析与掘进速率预测[J]. 机械科学与技术, 2021, 40(6): 835-839. doi: 10.13433/j.cnki.1003-8728.20200161
YANG Kaihong, ZHANG Qian, ZHOU Siyang. Advance Rate Prediction by Recurrent Neural Networks Analysis on In-situ Data of Tunnel Boring Machines[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 835-839. doi: 10.13433/j.cnki.1003-8728.20200161
Citation: YANG Kaihong, ZHANG Qian, ZHOU Siyang. Advance Rate Prediction by Recurrent Neural Networks Analysis on In-situ Data of Tunnel Boring Machines[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 835-839. doi: 10.13433/j.cnki.1003-8728.20200161

盾构工程实测数据时序性质分析与掘进速率预测

doi: 10.13433/j.cnki.1003-8728.20200161
基金项目: 

国家重点研发计划项目 2018YFB1702500

国家自然科学基金面上项目 11872269

纳米矿物材料及应用教育部工程研究中心开放课题 NGM2020KF010

详细信息
    作者简介:

    杨凯弘(1994-), 硕士研究生, 研究方向为工程数据分析, 838684012@qq.com

    通讯作者:

    张茜, 副教授, 博士生导师, zhangqian@tju.edu.cn

  • 中图分类号: O348.9;U455.3

Advance Rate Prediction by Recurrent Neural Networks Analysis on In-situ Data of Tunnel Boring Machines

  • 摘要: 本文基于工程实测数据, 在分析其序列性质的基础上, 提出了基于时序神经网络方法的盾构掘进速率预测方法, 并在天津地铁9号线这一实际工程算例中对所提出的方法的有效性进行验证, 讨论比较了Simple RNN、LSTM与GRU这3种不同时序神经网络算法的掘进速率预测表现。结果表明, 本文提出的基于时序神经网络的盾构掘进速率预测方法能够较好地分析掘进中积累的工程实测数据中的序列性质, 从而对前方掘进速率进行预测, 且比具有"门"性质的LSTM与GRU方法表现出了更好的预测效果。
  • 图  1  LSTM与GRU原理示意图

    图  2  使用RNN的地质参量预测方法训练流程

    图  3  按照隧道施工顺序划分训练集与测试集示意图

    图  4  3种时序神经网络方法掘进速率预测表现随输入时间窗口变化趋势

    图  5  掘进速率实测值与Simple RNN方法预测值对比

    图  6  掘进速率实测值与LSTM方法预测值对比

    图  7  掘进速率实测值与GRU方法预测值对比

    表  1  天津地铁9号线所用标段参量部分统计性质

    参数名及单位 最大值 最小值 均值 标准差
    掘进速率/(mm·min-1) 55.68 16.84 35.23 10.04
    总推力/kN 24 701.68 10 436.07 15 840.43 2 905.33
    刀盘扭矩/(kN·m) 1 706.28 803.08 1 264.49 148.71
    刀盘转速/(r·min-1) 1.10 0.40 0.94 0.14
    泊松比/kPa 7.89 4.70 6.57 0.01
    容重/(g·cm-3) 0.31 0.23 0.29 0.52
    粘聚力/kPa 2.23 1.60 2.10 0.06
    静止土压力系数 32.93 19.84 28.03 2.10
    内摩擦角/(°) 0.45 0.31 0.40 0.03
    下载: 导出CSV
  • [1] BARLA G, PELIZZA S. TBM tunnelling in difficult ground conditions[C]//Paper Presented at the ISRM International Symposium. Melbourne, Australia: ISRM, 2000
    [2] ARMAGHANI D J, KOOPIALIPOOR M, MARTO A, et al. Application of several optimization techniques for estimating TBM advance rate in granitic rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 779-789 doi: 10.1016/j.jrmge.2019.01.002
    [3] ENTACHER M, WINTER G, GALLER R. Cutter force measurement on tunnel boring machines-Implementation at Koralm tunnel[J]. Tunnelling and Underground Space Technology, 2013, 38: 487-496 doi: 10.1016/j.tust.2013.08.010
    [4] LIU B, GUO Q, LIU Z Y, et al. Comprehensive ahead prospecting for hard rock TBM tunneling in complex limestone geology: a case study in Jilin, China[J]. Tunnelling and Underground Space Technology, 2019, 93: 103045 doi: 10.1016/j.tust.2019.103045
    [5] LAN H, XIA Y M, ZHU Z M, et al. Development of on-line rotational speed monitor system of TBM disc cutter[J]. Tunnelling and Underground Space Technology, 2016, 57: 66-75 doi: 10.1016/j.tust.2016.02.023
    [6] TANG B, CHENG H, TANG Y Z, et al. Experiences of gripper TBM application in shaft coal mine: a case study in Zhangji coal mine, China[J]. Tunnelling and Underground Space Technology, 2018, 81: 660-668 doi: 10.1016/j.tust.2018.08.055
    [7] FROUGH O, TORABI S R, TAJIK M. Evaluation of TBM utilization using rock mass rating system: a case study of Karaj-Tehran water conveyance tunnel (Lots 1 and 2)[J]. Journal of Mining and Environment, 2012, 3(2): 89-98 http://jme.shahroodut.ac.ir/article_86_11.html
    [8] AVUNDUK E, COPUR H. Empirical modeling for predicting excavation performance of EPB TBM based on soil properties[J]. Tunnelling and Underground Space Technology, 2018, 71: 340-353 doi: 10.1016/j.tust.2017.09.016
    [9] MACIAS F J, JAKOBSEN P D, SEO Y, et al. Influence of rock mass fracturing on the net penetration rates of hard rock TBMs[J]. Tunnelling and Underground Space Technology, 2014, 44: 108-120 doi: 10.1016/j.tust.2014.07.009
    [10] BOUAYAD D, EMERIAULT F. Modeling the relationship between ground surface settlements induced by shield tunneling and the operational and geological parameters based on the hybrid PCA/ANFIS method[J]. Tunnelling and Underground Space Technology, 2017, 68: 142-152 doi: 10.1016/j.tust.2017.03.011
    [11] MAHDEVARI S, TORABI S R, MONJEZI M. Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 55: 33-44 doi: 10.1016/j.ijrmms.2012.06.005
    [12] HYUN K C, MIN S, CHOI H, et al. Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels[J]. Tunnelling and Underground Space Technology, 2015, 49: 121-129 doi: 10.1016/j.tust.2015.04.007
    [13] SALIMI A, ROSTAMI J, MOORMANN C, et al. Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs[J]. Tunnelling and Underground Space Technology, 2016, 58: 236-246 doi: 10.1016/j.tust.2016.05.009
    [14] SUN W, SHI M L, ZHANG C, et al. Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data[J]. Automation in Construction, 2018, 92: 23-34 doi: 10.1016/j.autcon.2018.03.030
    [15] SALIMI A, FARADONBEH R S, MONJEZI M, et al. TBM performance estimation using a classification and regression tree (CART) technique[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(1): 429-440 doi: 10.1007/s10064-016-0969-0
    [16] MAHDEVARI S, SHAHRIAR K, YAGIZ S, et al. A support vector regression model for predicting tunnel boring machine penetration rates[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 214-229 doi: 10.1016/j.ijrmms.2014.09.012
    [17] JAVAD G, NARGES T. Application of artificial neural networks to the prediction of tunnel boring machine penetration rate[J]. Mining Science and Technology (China), 2010, 20(5): 727-733 doi: 10.1016/S1674-5264(09)60271-4
    [18] ADOKO A C, GOKCEOGLU C, YAGIZ S. Bayesian prediction of TBM penetration rate in rock mass[J]. Engineering Geology, 2017, 226: 245-256 doi: 10.1016/j.enggeo.2017.06.014
    [19] SEKER S E, OCAK I. Performance prediction of roadheaders using ensemble machine learning techniques[J]. Neural Computing and Applications, 2019, 31(4): 1103-1116 doi: 10.1007/s00521-017-3141-2
    [20] GAO X J, SHI M L, SONG X G, et al. Recurrent neural networks for real-time prediction of TBM operating parameters[J]. Automation in Construction, 2019, 98: 225-235 doi: 10.1016/j.autcon.2018.11.013
    [21] FREITAG S, CAO B T, NINIĆ J, et al. Recurrent neural networks and proper orthogonal decomposition with interval data for real-time predictions of mechanised tunnelling processes[J]. Computers & Structures, 2018, 207: 258-273 http://www.sciencedirect.com/science/article/pii/S0045794917302195
    [22] MISRA M, YUE H H, QIN S J, et al. Multivariate process monitoring and fault diagnosis by multi-scale PCA[J]. Computers & Chemical Engineering, 2002, 26(9): 1281-1293 http://www.sciencedirect.com/science/article/pii/S0098135402000935
    [23] HOT A, KERSCHEN G, FOLTÊTE E, et al. Detection and quantification of non-linear structural behavior using principal component analysis[J]. Mechanical Systems and Signal Processing, 2012, 26: 104-116 doi: 10.1016/j.ymssp.2011.06.006
    [24] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117
    [25] DENG L, YU D. Deep learning: methods and applications[J]. Foundations and Trends in Signal Processing, 2014, 7(3-4): 197-387 doi: 10.1561/2000000039
    [26] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166 doi: 10.1109/72.279181
    [27] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [28] CHO K, VAN MERRIЁNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv: 1406.1078, 2014
    [29] TOKGÖZ N, SERKAN BINEN I, AVUNDUK E. An evaluation of fine grained sedimentary materials in terms of geotechnical parameters which define and control excavation performance of EPB TBM′s[J]. Tunnelling and Underground Space Technology, 2015, 47: 211-221 doi: 10.1016/j.tust.2014.12.007
    [30] BERTHOZ N, BRANQUE D, WONG H, et al. TBM soft ground interaction: experimental study on a 1 g reduced-scale EPBS model[J]. Tunnelling and Underground Space Technology, 2018, 72: 189-209 http://www.sciencedirect.com/science/article/pii/S0886779816302309
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  49
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-10
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回