留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大数据驱动的离散制造车间实时能效分析方法

张朝阳 吉卫喜 仇永涛

张朝阳, 吉卫喜, 仇永涛. 大数据驱动的离散制造车间实时能效分析方法[J]. 机械科学与技术, 2020, 39(9): 1395-1403. doi: 10.13433/j.cnki.1003-8728.20200159
引用本文: 张朝阳, 吉卫喜, 仇永涛. 大数据驱动的离散制造车间实时能效分析方法[J]. 机械科学与技术, 2020, 39(9): 1395-1403. doi: 10.13433/j.cnki.1003-8728.20200159
Zhang Chaoyang, Ji Weixi, Qiu Yongtao. Big Data Driven Real-time Energy Efficiency Analysis Method of Discrete Manufacturing Workshops[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(9): 1395-1403. doi: 10.13433/j.cnki.1003-8728.20200159
Citation: Zhang Chaoyang, Ji Weixi, Qiu Yongtao. Big Data Driven Real-time Energy Efficiency Analysis Method of Discrete Manufacturing Workshops[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(9): 1395-1403. doi: 10.13433/j.cnki.1003-8728.20200159

大数据驱动的离散制造车间实时能效分析方法

doi: 10.13433/j.cnki.1003-8728.20200159
基金项目: 

国家自然科学基金青年基金项目 51805213

江苏省自然科学基金青年基金项目 BK20170190

详细信息
    作者简介:

    张朝阳(1987-), 讲师, 博士, 研究方向为低碳制造、智能制造, cyzhang@jiangnan.edu.cn

  • 中图分类号: TH166

Big Data Driven Real-time Energy Efficiency Analysis Method of Discrete Manufacturing Workshops

  • 摘要: 为实现生产过程的节能减排,提出一种大数据驱动的离散制造车间实时能效分析方法。首先,从能耗数据与工艺数据两个方面构建了制造数据封装模型,以实现制造大数据的采集与存储;其次,通过数据聚类与数据关联分析,建立了制造大数据分析方法,实现了能耗数据的特征提取及其与工艺数据的关联融合,并据此建立了离散制造车间多层次实时能效分析指标。该方法将大数据处理与制造车间能效分析相结合,通过能耗数据的挖掘分析与可视化展示,为智能车间的节能控制提供了决策依据。
  • 图  1  大数据驱动的离散制造车间能效分析与节能控制

    图  2  制造大数据关联分析模型

    图  3  离散制造车间实时能效分析系统

    图  4  机床和工件的能效分析结果比较

    表  1  制造车间多层次能效分析指标

    分析层次 分析指标 计算方法
    单台机床 能耗利用率
    等待能耗比率
    加工能效
    单个工件 能耗利用率
    等待能耗比率
    生产能效
    经济能效
    整个车间 能耗利用率
    经济能效
    注:Vk为第k道工序的材料切除体积; MTEk为第k道工序的总能耗; WECi为第i个工件的总能耗; Qi为第i个工件的加工数量; Pi为第i个工件的单位收益; WSEC为车间总体能耗。
    下载: 导出CSV

    表  2  所加工蜗杆的具体参数

    参数 蜗杆1 蜗杆2 蜗杆3
    蜗杆头数 2 2 2
    模数/mm 8 6.3 9
    分度圆直径/mm 72 63 81
    分度圆导程角/(°) 12.53 11.31 12.53
    蜗杆材料 20Cr 45钢 20Cr
    利润/元 45 36 51
    生产率/(根/时) 8 11 6
    下载: 导出CSV

    表  3  能耗大数据特征提取算法的测试结果

    编号 样本数据量 平均计算时间/s 平均精度/%
    1 2 170 0.014 99.7
    2 4 730 0.039 98.9
    3 9 210 0.092 98.5
    下载: 导出CSV
  • [1] Liu N, Zhang Y F, Lu W F. A hybrid approach to energy consumption modelling based on cutting power:a milling case[J]. Journal of Cleaner Production, 2015, 104:264-272 doi: 10.1016/j.jclepro.2015.05.049
    [2] Peng T, Xu X, Wang L H. A novel energy demand modelling approach for CNC machining based on function blocks[J]. Journal of Manufacturing Systems, 2014, 33(1):196-208 doi: 10.1016/j.jmsy.2013.12.004
    [3] Ciceri N D, Gutowski T G, Garetti M. A tool to estimate materials and manufacturing energy for a product[C]//Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology. Arlington: IEEE, 2010: 1-6
    [4] Wang Q L, Liu F, Li C B. An integrated method for assessing the energy efficiency of machining workshop[J]. Journal of Cleaner Production, 2013, 52:122-133 doi: 10.1016/j.jclepro.2013.03.020
    [5] Chen X Z, Li C B, Tang Y, et al. An Internet of Things based energy efficiency monitoring and management system for machining workshop[J]. Journal of Cleaner Production, 2018, 199:957-968 doi: 10.1016/j.jclepro.2018.07.211
    [6] Wang W B, Yang H D, Zhang Y F, et al. IoT-enabled real-time energy efficiency optimisation method for energy-intensive manufacturing enterprises[J]. International Journal of Computer Integrated Manufacturing, 2018, 31(4-5):362-379 doi: 10.1080/0951192X.2017.1337929
    [7] Xu X Y, Hua Q S. Industrial big data analysis in smart factory:current status and research strategies[J]. IEEE Access, 2017, 5:17543-17551 doi: 10.1109/ACCESS.2017.2741105
    [8] Zhong R Y, Huang G Q, Lan S L, et al. A big data approach for logistics trajectory discovery from RFID-enabled production data[J]. International Journal of Production Economics, 2015, 165:260-272 doi: 10.1016/j.ijpe.2015.02.014
    [9] Ren S, Zhang Y F, Liu Y, et al. A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing:A framework, challenges and future research directions[J]. Journal of Cleaner Production, 2019, 210:1343-1365 doi: 10.1016/j.jclepro.2018.11.025
    [10] 张洁, 汪俊亮, 吕佑龙, 等.大数据驱动的智能制造[J].中国机械工程, 2019, 30(2):127-133, 158 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201902001

    Zhang J, Wang J L, Lv Y L, et al. Big data driven intelligent manufacturing[J]. China Mechanical Engineering, 2019, 30(2):127-133, 158(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201902001
    [11] Zhang Y F, Ma S Y, Yang H D, et al. A big data driven analytical framework for energy-intensive manufacturing industries[J]. Journal of Cleaner Production, 2018, 197:57-72 doi: 10.1016/j.jclepro.2018.06.170
    [12] Wang S, Liang Y C, Li W D, et al. Big Data enabled Intelligent Immune System for energy efficient manufacturing management[J]. Journal of Cleaner Production, 2018, 195:507-520 doi: 10.1016/j.jclepro.2018.05.203
    [13] Zhang Y F, Ma S Y, Yang H D, et al. A big data driven analytical framework for energy-intensive manufacturing industries[J]. Journal of Cleaner Production, 2018, 197:57-72 doi: 10.1016/j.jclepro.2018.06.170
    [14] Zhang C Y, Jiang P Y. RFID-driven energy-efficient control approach of CNC machine tools using deep belief networks[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(1):129-141 doi: 10.1109/TASE.2019.2909043
    [15] Zhang C Y, Jiang P Y. Sustainability evaluation of process planning for single CNC machine tool under the consideration of energy-efficient control strategies using random forests[J]. Sustainability, 2019, 11(11):3060 doi: 10.3390/su11113060
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  97
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-28
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回