留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属表面缺陷检测的改进YOLOv3算法研究

方叶祥 甘平 陈俐

方叶祥, 甘平, 陈俐. 金属表面缺陷检测的改进YOLOv3算法研究[J]. 机械科学与技术, 2020, 39(9): 1390-1394. doi: 10.13433/j.cnki.1003-8728.20200158
引用本文: 方叶祥, 甘平, 陈俐. 金属表面缺陷检测的改进YOLOv3算法研究[J]. 机械科学与技术, 2020, 39(9): 1390-1394. doi: 10.13433/j.cnki.1003-8728.20200158
Fang Yexiang, Gan Ping, Chen Li. Improved YOLOv3 Algorithm For Detection of Metal Surface Defect[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(9): 1390-1394. doi: 10.13433/j.cnki.1003-8728.20200158
Citation: Fang Yexiang, Gan Ping, Chen Li. Improved YOLOv3 Algorithm For Detection of Metal Surface Defect[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(9): 1390-1394. doi: 10.13433/j.cnki.1003-8728.20200158

金属表面缺陷检测的改进YOLOv3算法研究

doi: 10.13433/j.cnki.1003-8728.20200158
基金项目: 

江苏省高校社会科学重点基金项目 2017ZDIXM075

详细信息
    作者简介:

    方叶祥(1971-), 副教授, 硕士生导师, 博士, 研究方向为质量管理、机器视觉, yexiangf@njtech.edu.cn

  • 中图分类号: TP391

Improved YOLOv3 Algorithm For Detection of Metal Surface Defect

  • 摘要: 针对现有的金属表面缺陷检测方法存在着检测效率低、适用范围受限、处理步骤繁琐等缺陷,提出了基于改进型YOLOv3算法的实时缺陷检测方法。该方法将采集到的图片分为N×N个格子,每个格子用来检测缺陷的中心点是否在格子中,利用特征金字塔与残差层融合特征的方式对图片中的缺陷进行定位,得到多个缺陷的边界框,使用非极大抑制的方法筛选出得分最高的边界框。为了提高检测效果,在输入端对图像进行直方图均衡化,并基于缺陷权重优化了算法中的损失函数以提高缺陷分类的准确性。最后,利用改进型YOLOv3算法对钢板表面的压痕与划痕进行了实验检测,结果显示该方法可以快速、准确检测出钢材表面的压痕与划痕,精度分别为92%和90%。
  • 图  1  DarkNet-53结构图

    图  2  特征金字塔示意图

    图  3  技术路线图

    图  4  直方图增强对比图

    图  5  检测结果对比图

    图  6  损失函数优化前后对比

    表  1  模型性能对比

    模型 mAP 检测速度(张/秒)
    YOLOv3 33.0 48
    Faster RCNN 35.9 8
    SSD 21.9 45
    下载: 导出CSV

    表  2  检测结果统计

    压痕 划痕
    精确率P 召回率R 精确率P 召回率R
    优化前 88.1% 94.9% 90.5% 95.0%
    优化后 89.2% 84.6% 91.9% 91.9%
    下载: 导出CSV
  • [1] Arjun V, Sasi B, Rao B P C, et al. Optimisation of pulsed eddy current probe for detection of sub-surface defects in stainless steel plates[J]. Sensors and Actuators A:Physical, 2015, 226:69-75 doi: 10.1016/j.sna.2015.02.018
    [2] Tsukada K, Majima Y, Nakamura Y, et al. Detection of inner cracks in thick steel plates using unsaturated AC magnetic flux leakage testing with a magnetic resistance gradiometer[J]. IEEE Transactions on Magnetics, 2017, 53(11):2501305 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e5ac25f4007eb22dbe416c3564d8181
    [3] 陈大鹏, 毛宏霞, 肖志河.红外热成像无损检测技术现状及发展[J].计算机测量与控制, 2016, 24(4):1-6, 9 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjzdclykz201604001

    Chen D P, Mao H X, Xiao Z H. Infrared thermography NDT and its development[J]. Computer Measurement & Control, 2016, 24(4):1-6, 9(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjzdclykz201604001
    [4] Liu H W, Lan Y Y, Lee H W, et al. Steel surface in-line inspection using machine vision[C]//Proceedings Volume 10011, First International Workshop on Pattern Recognition. Tokyo: SPIE, 2016: 100110X
    [5] 吴贵芳, 徐科, 杨朝霖.钢板表面质量在线监测技术[M].北京:科学出版社, 2010

    Wu G F, Xu K, Yang C L. On line monitoring technology of steel plate surface quality[M]. Beijing:Science Press, 2010(in Chinese)
    [6] Li W B, Zhang Q Z, Sun J L, et al. Review of vision inspection technology for surface defect of steel bar[J]. Applied Mechanics and Materials, 2015, 740:543-546 doi: 10.4028/www.scientific.net/AMM.740.543
    [7] 李怡.冷轧带钢表面缺陷数据关联规则挖掘方法研究[D].武汉: 武汉科技大学, 2017

    Li Y. Research on association rule mining method of surface defect data of cold rolled strip[D]. Wuhan: Wuhan University of Science and Technology, 2017(in Chinese)
    [8] 蒋芸, 彭婷婷, 谭宁, 等.基于YOLO算法的眼底图像视盘定位方法[J].计算机工程与科学, 2019, 41(9):1662-1670 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgcykx201909020

    Jiang Y, Peng T T, Tan N, et al. An optic disc positioning method in fundus images based on YOLO[J]. Computer Engineering and Science, 2019, 41(9):1662-1670(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgcykx201909020
    [9] 胡联亭.基于机器视觉的钢板表面缺陷识别研究[D].武汉: 武汉科技大学, 2018

    Hu L T. Research on surface detect recognition of steel plate based on machine vision[D]. Wuhan: Wuhan University of Science and Technology, 2018(in Chinese)
    [10] 崔洁.基于随机森林的激光超声金属表面缺陷识别方法研究[D].太原: 中北大学, 2019

    Cui J. Research on laser ultrasonic metal surface defect recognition based on random forest[D]. Taiyuan: North University of China, 2019(in Chinese)
    [11] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016
    [12] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2016
    [13] Redmon J, Farhadi A. YOLOv3:An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018 http://arxiv.org/abs/1804.02767
    [14] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440
    [15] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778
    [16] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifica-tion with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2012: 1097-1105
    [17] Xu B, Wang N Y, Chen T Q, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv preprint arXiv:1505.00853, 2015 http://www.oalib.com/paper/4075127
    [18] Neubeck A, van Gool L. Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006: 850-855
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  102
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-09
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回